Quasi-artinian groups

Takanori Sakamoto

(Received September 12, 1984)

Introduction

Aldosray [1] introduced the concept of quasi-artinian Lie algebras generalizing those of soluble Lie algebras and artinian Lie algebras, that is, Lie algebras satisfying the minimal condition for ideals, and left an open question asking whether a semisimple quasi-artinian Lie algebra is always artinian. On the other hand, he introduced the concept of quasi-artinian groups in an analogous way and noted that the corresponding results mentioned in [1] hold for groups. Subsequently Kubo and Honda [2] provided a negative answer to the question above, and moreover gave a condition under which quasi-artinian Lie algebras are soluble (resp. artinian).

In this paper, following the paper [2] we construct a semisimple quasi-artinian group which is neither soluble nor artinian and give a condition under which quasi-artinian groups are soluble (resp. artinian).

We shall prove in Section 2 that the class of quasi-artinian groups is countably recognizable (Proposition 2.2) and that a subgroup with finite index in a quasiartinian group is quasi-artinian under some conditions (Proposition 2.3). In Section 3 we shall prove that every residually (ω)-central quasi-artinian group is soluble (Theorem 3.3) and that every residually commutable quasi-artinian group is hyperabelian (Theorem 3.7). The main result of Section 4 is that a quasiartinian group G is artinian if and only if for each normal subgroup N of $G G / N$ satisfies the minimal condition on abelian normal subgroups (Theorem 4.2). In Section 5 we shall give examples showing that the class of quasi-artinian groups is not E -closed (i.e. \boldsymbol{P}-closed) and is not s_{n}-closed.

The author would like to express his gratitude to Professor S. Tôgô for his encouragement.

1.

Let G be a group. As usual, $x^{y}=y^{-1} x y$ and $[x, y]=x^{-1} y^{-1} x y,[x, y, z]=$ $[[x, y], z]$ for $x, y, z \in G$. We write inductively

$$
\begin{aligned}
& \mathrm{D}^{1}\left(x_{1}, x_{2}\right)=\left[x_{1}, x_{2}\right] \\
& \mathrm{D}^{n+1}\left(x_{1}, \ldots, x_{2^{n+1}}\right)=\left[\mathrm{D}^{n}\left(x_{1}, \ldots, x_{2^{n}}\right), \mathrm{D}^{n}\left(x_{2^{n}+1}, \ldots, x_{2^{n+1}}\right)\right] \quad(n \geq 1),
\end{aligned}
$$

