Classes of generalized soluble Lie algebras

Masanobu Honda

(Received August 23, 1985)

Introduction

A class \mathfrak{X} of Lie algebras is said to be a class of generalized soluble Lie algebras if every soluble Lie algebra is an \mathfrak{X} -algebra and every finite-dimensional \mathfrak{X} -algebra is soluble. As relatively large classes of generalized soluble Lie algebras we know the classes $\hat{\mathbb{E}}(\prec)\mathfrak{A}$ and $\hat{\mathbb{E}}\mathfrak{A}$, which are the Lie-theoretic analogues of the class of *SI*-groups and the class of *SN*-groups respectively. In group theory Mal'cev [6] has proved that the class of *SI*-groups, the class of *SN*-groups and the class of *Z*-groups are L-closed. The first purpose of this paper is to prove the Lie-theoretic analogue of this result.

Generalizing the class \Re of residually central Lie algebras, Amayo [2] has introduced a relatively large class, denoted by $\Re^{(1)}$ in this paper, of generalized soluble Lie algebras. In the recent paper [5] we have introduced the class $\Re_{(\infty)}$ of residually (ω)-central Lie algebras. The second purpose of this paper is to introduce and investigate various classes of Lie algebras generalizing the class \Re . Most of them are classes of generalized soluble Lie algebras.

In Section 2, following [8, §8.2] it can be more generally proved that the classes $\hat{E}\mathfrak{A}$, $\hat{E}(\lhd)\mathfrak{A}$ and $\hat{E}(\lhd)\mathfrak{A}$ are L-closed, where $\hat{E}(\lhd)\mathfrak{A}$ is the class of Lie algebras having central series (Theorems 2.2 and 2.6). We shall also show that every finite-dimensional subalgebra of an $\hat{E}(\lhd)\mathfrak{A}$ -algebra (resp. a hypocentral Lie algebra) is serial (resp. descendant) (Theorem 2.9).

In Section 3 we shall develop some results analogous to those of [5, §2] by using the class $\Re_{(*)}$, naturally including the class $\Re_{(\infty)}$, of generalized soluble Lie algebras. Especially, we shall show that $\Re_{(*)} \cap \mathfrak{M}^{(*)} = \check{e}\mathfrak{A}$ (Theorem 3.5), where $\mathfrak{M}^{(*)}$ is a class of Lie algebras generalizing quasi-artinian Lie algebras.

Section 4 is devoted to investigating the classes \Re^* , $\Re^{(*)}$, $\Re^{(1)}_{(*)}$ and $\Re^{(*)}_{(*)}$, naturally including the class $\Re^{(1)}$, of generalized soluble Lie algebras. We shall show that $\Re^{(1)} = \Re^* = \Re^{(*)} = (\grave{e}\mathfrak{A})\Re^{(1)} = (\grave{e}\mathfrak{A})\Re^{(*)}$ and $\Re^{(1)}_{(*)} = \Re^{(*)}_{(*)} =$ $(\grave{e}\mathfrak{A})\Re^{(1)}_{(*)} = (\grave{e}\mathfrak{A})\Re^{(*)}_{(*)}$ (Theorem 4.3). We shall also show that $\Re^{(*)}_{(*)} \cap \operatorname{Min} = \pounds(\lhd)\mathfrak{A} \cap \operatorname{Min} = \pounds(\lhd)\mathfrak{A} \cap \operatorname{Min} = 4.6$.

In Section 5 we shall investigate the classes $\Re_{(1)}$ and \Re_* which are between the classes \Re and $\Re_{(*)}$. In particular, we shall present a sufficient condition for a Lie algebra to be contained in the class $\Re^{(1)}$ and consequently show that $\Re_{(1)}$ is a subclass of the class $\Re^{(1)}$ (Theorem 5.2).