On the oscillatory properties of the solutions of non-linear neutral functional differential equations of second order

D. D. BAINOV¹⁾, A. D. MYSHKIS²⁾ and A. I. ZAHARIEV¹⁾ (Received December 14, 1987)

1. Introduction

In the present paper sufficient conditions have been obtained for oscillation or tending to zero of all bounded solutions of equations of the form

(1)
$$[A(x_t)]'' + p(t)B(x_t) = 0,$$

where $x_t(\theta) = x(t + \theta), \ \theta \in [-\tau, 0], \ \tau = \text{const} > 0$ and the functionals $A, B: C[-\tau, 0] \rightarrow \mathbf{R}$ are monotonic.

The oscillatory properties of linear and non-linear ordinary differential and functional differential equations have been an object of investigation by many authors [2]-[5], [8], [10]. The neutral equations of second order have numerous applications (see for instance [1], [6]) but their oscillatory and asymptotic properties are studied comparatively little. Some results in this direction for the case when the function p(t) is nonnegative have been obtained in [9], [11], [12].

2. Preliminary notes and main result

DEFINITION 1. We shall say that the function $\varphi: J_{\varphi} \to \mathbf{R}$ $(J_{\varphi} = [t_{\varphi}, \infty), t_{\varphi} \in \mathbf{R})$ is oscillating if sup $\{t | \varphi(t) = 0\} = \infty$ and sup $\{t | \varphi(t) \neq 0\} = \infty$.

DEFINITION 2. A function $x: J_x \to \mathbf{R}$ will be called a solution of equation (1) if $x \in C(J_x)$, $A(x_t) \in C^2(J_x + \tau)$ and satisfies equation (1) for $t \in J_x + \tau$, where $J_x + \tau = \{t | t - \tau \in J_x\}$.

By $\Omega^{\alpha,\beta}$ $(0 < \beta \leq \alpha)$ we shall denote the set of all continuous functionals $A: C[-\tau, 0] \rightarrow \mathbf{R}$ which satisfy the following conditions:

A1. For any function $\varphi \in C[-\tau, 0]$ with the property $\varphi(t) \neq 0$, $t \in [-\tau, 0]$, the following equality holds

$$\operatorname{sgn} A(\varphi) = \operatorname{sgn} \varphi(0)$$
.