On oscillations of neutral equations with mixed arguments

G. Ladas and S. W. Schults
(Received March 7, 1988)
(Revised June 13, 1988)

1. Introduction and preliminaries

Consider the neutral differential equation

$$
\begin{equation*}
\frac{d}{d t}[y(t)+p y(t-\tau)]+q y(t-\sigma)=0 \tag{1}
\end{equation*}
$$

where p, τ, q and σ are real numbers. The main results in this paper are the following:

Theorem 1. The following statements are equivalent:
(a) Every bounded solution of Eq. (1) oscillates.
(b) The characteristic equation associated with Eq. (1)

$$
\begin{equation*}
F(\lambda)=\lambda+\lambda p e^{-\lambda \tau}+q e^{-\lambda \sigma}=0 \tag{2}
\end{equation*}
$$

has no roots in $(-\infty, 0]$.

Theorem 2. The following statements are equivalent:
(a) Every unbounded solution of Eq. (1) oscillates.
(b) The characteristic equation (2) associated with Eq. (1) has no roots in $(0, \infty)$ and 0 is not a double root of Eq. (2).

An immediate corollary of the above theorems is the following result which was proved in [3].

Corollary Every solution of Eq. (1) oscillates if and only if its characteristic equation (2) has no real roots.

As is customary a solution of Eq. (1) is called oscillatory if it has arbitrarily large zeros. Otherwise it is called nonoscillatory.

In the sequel all functional inequalities that we write are assumed to hold eventually, that is for sufficiently large t.

