# A note on Picard principle for rotationally invariant density 

Michihiko Kawamura<br>(Received August 24, 1989)

A nonnegative locally Hölder continuous function $P$ on the punctured closed unit disk $0<|z| \leq 1$ will be referred to as a density on $\Omega: 0<|z|<1$. For a density $P$ on $\Omega$ we consider the Martin compactification $\Omega_{P}^{*}$ of $\Omega$ with respect to the equation

$$
\begin{equation*}
L_{P} u \equiv \Delta u-P u=0 \quad\left(\Delta=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}\right) \tag{1}
\end{equation*}
$$

on $\Omega$. We say that the Picard principle is valid for $P$ if the set of Martin minimal boundary points over the origin $z=0$ consists of a single point. In the case that $P$ is a rotationally invariant density on $\Omega$, i.e., a density $P$ satisfying $P(z)=P(|z|)(z \in \Omega)$, the Martin compactification $\Omega_{P}^{*}$ is characterized completely by Nakai [3] in terms of what he calls the singularity index $\alpha(P)$ of $P$ at $z=0$ :

$$
\Omega_{P}^{*} \simeq\{\alpha(P) \leq|z| \leq 1\} ;
$$

in particular, the Picard principle is valid for $P$ if and only if $\alpha(P)=0$.
Take two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}(n=1,2, \cdots)$ in the interval $(0,1)$ satisfying $b_{n+1}<a_{n}<b_{n}$ with $\left\{a_{n}\right\}$ tending to zero as $n \rightarrow \infty$. We consider a sequence of annuli:

$$
A_{n} \equiv\left\{z \in C: a_{n} \leq|z| \leq b_{n}\right\}, \quad A=\bigcup_{n=1}^{\infty} A_{n},
$$

in $\Omega$ and set

$$
P_{n} \equiv(2 \pi)^{-1} \iint_{A_{n}} P(z) d x d y+1
$$

The purpose of this note is to show the following
Theorem. Let $P$ be a rotationally invariant density. If sequences $\left\{a_{n}\right\}$, $\left\{b_{n}\right\}$, and $\left\{P_{n}\right\}$ satisfy the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left\{\log \left(b_{n} / a_{n}\right)\right\}^{2}}{1+P_{n} \log \left(b_{n} / a_{n}\right)}=+\infty, \tag{2}
\end{equation*}
$$

then the Picard principle is valid for $P$ at $z=0$.
Corollary 1. If sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfy the conditions

