A distortion theorem for conformal mappings with an application to subharmonic functions

Dedicated to Professor T. Fuji'i'e on his 60th birthday

Makoto MASUMOTO

(Received June 27, 1989)

1. Introduction

Let f be a conformal mapping of a domain D_0 of C bounded by a finitely many analytic curves. Our first purpose of this paper is to establish the following relation between |f'(z)| and the Poincaré metric $\lambda_{D_0}(z)$ for D_0 .

THEOREM I. If $f(D_0)$ satisfies an exterior θ -wedge condition, then there exists m > 0 such that

$$\frac{1}{|f'(z)|} \le m\lambda_{D_0}(z)^{1-\theta}$$

for $z \in D_0$.

Here, a finitely connected domain D is said to satisfy an exterior θ -wedge condition if it is bounded and there exist $\rho > 0$ and $\theta \in (0, 1)$ such that, for every $\omega \in \partial D$, a closed sector of radius ρ and opening $\pi \theta$ with vertex at ω lies in $\mathbf{C} - D$.

Recently, N. Suzuki has obtained the following theorem:

THEOREM (Suzuki [5, Theorem 2]). Let D be a bounded $C^{1,1}$ -domain of C, and denote by $\delta_D(z)$ the distance between $z \in D$ and ∂D . Set $\alpha(p) = 1 + \max\{1-p,0\}$ for 0 . If a nonnegative subharmonic function s on Dsatisfies

$$\iint_D \delta_D(z)^{-\alpha(p)} s(z)^p \, dx \, dy < +\infty , \qquad z = x + iy ,$$

then s must vanish identically.

We apply Theorem I to generalize Suzuki's theorem:

THEOREM II. Suppose that D satisfies an exterior θ -wedge condition. Set $\beta(p, \theta) = 2 - \min \{1, p\}/(2 - \theta)$. If a nonnegative subharmonic function s on D satisfies