Hiroshima Math. J. **24** (1994), 111–121

Classification and uniqueness of positive solutions of $\Delta u + f(u) = 0$

Dedicated to Professor Takaŝi Kusano on his 60th birthday

Fu-Hsiang WONG and Cheh-Chih YEH* (Received May 25, 1992)

Abstract

Given $0 \le \theta < \infty$. In this paper, we classify the solutions of the initial value problem

(*)
$$\begin{cases} u''(r) + \frac{m}{r}u'(r) + f(u(r)) = 0 \text{ on } (\theta, R(\xi)), \\ u(\theta) = \xi > 0 \text{ and } u'(\theta) = 0, \end{cases}$$

where f is locally Lipschitz on $(0, \infty)$ and there exist two positive constants α , β such that f(u) < 0 on $(0, \alpha)$, f(u) > 0 on (α, ∞) and $F(\beta) > 0$. Here $R(\xi) := \sup \{r \in (\theta, \infty) | u(s) > 0$ for all $s \in [\theta, r) \}$ and $F(u) := \int_0^u f(s) ds$ for $u \ge 0$. Moreover, we establish an existence-uniqueness theorem of a solution for equation (*) satisfying u'(0) = 0 and $\lim_{r \to \infty} u(r) = 0$.

1. Introduction

Let $\theta \in [0, \infty)$ be given and $\mathbb{R}^n (n \ge 2)$ denote the usual *n*-dimensional Euclidean space. Consider the following two problems:

(I₁)

$$\begin{cases}
\Delta u + f(u) = 0 & \text{in } \Omega(R(\xi)), \\
\frac{\partial u}{\partial n} = 0 & \text{if } |x| = \theta, \\
u(x) = \xi > 0 & \text{if } |x| = \theta; \\
\lambda u + f(u) = 0 & \text{in } \Omega(\infty), \\
\frac{\partial u}{\partial n} = 0 & \text{if } |x| = \theta, \\
\lim_{|x| \to \infty} u(x) = 0,
\end{cases}$$

where $R(\xi) := \sup \{r \in (\theta, \infty) | u(x) > 0 \text{ for } \theta \le |x| < r\}$ and

^{*} This research was supported by the National Science Council.