Нікозніма Матн. J. 24 (1994), 583–605

On exterior A_n -spaces and modified projective spaces

Yutaka HEMMI

(Received May 12, 1993)

1. Introduction

A space X with a continuous multiplication $\mu: X \times X \to X$ with a unit is called an *H*-space. A typical example of *H*-space is a loop space. It is known that not all *H*-spaces have the homotopy type of loop spaces. The 7-dimensional sphere S^7 is one of such counter examples.

Sugawara [12] gave a criterion for an *H*-space to have the homotopy type of a loop space. His criterion is a kind of higher homotopy associativity of infinite order. Almost the same time Stasheff [9] reached the same idea, and he defined the A_n -space which is the *H*-space with higher homotopy associative multiplication of *n*-th order. In his sense A_2 -spaces are *H*-spaces, A_3 -spaces are homotopy associative *H*-spaces, and A_{∞} -spaces are spaces with the homotopy type of loop spaces.

In his paper, Stasheff defined the projective *n*-space $P_n(X)$ associated to a given A_n -space X, which is considered as a generalization of the *n*-th stage of the construction of the classifying space of a topological group or an associative H-space. In fact, $P_n(X)$ is defined inductively by $P_n(X) = P_{n-1}(X) \cup$ $C(X^{*n})$ with $P_0(X) = *$, where X^{*n} is the *n*-fold join of X. Then Stasheff proved that if $X = \Omega Y$, then $P_{\infty}(X)$ has the homotopy type of Y, where $P_{\infty}(X) = \bigcup_{i=1}^{\infty} P_i(X)$. The name 'projective' comes from the fact that if X is the unit sphere in the real, the complex or the quaternionic numbers, then $P_n(X)$ is the usual real, complex or quaternionic projective *n*-space.

The projective *n*-space has been very useful for the study of the cohomology of A_n -spaces. In fact, we have the following fact.

THEOREM (Iwase [4]). Let X be a simply connected A_n -space so that

$$H^*(X; \mathbb{Z}/p) \cong \Lambda(x_1, \dots, x_k), \quad \dim x_i : odd,$$

where p is a fixed prime. Suppose that there are classes $y_i \in H^*(P_n(X); \mathbb{Z}/p)$ so that each y_i restricts to the suspension of x_i in $H^*(\Sigma X; \mathbb{Z}/p)$ by the homomorphism induced by the inclusion $\Sigma X \subset P_n(X)$. (This property is referred as the A_n -primitivity of x_i .) Then there is an ideal S in $H^*(P_n(X); \mathbb{Z}/p)$ closed under the action of the Steenrod operation, so that