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Introduction

Let Λ be a compact or noncompact Riemann surface and let y be a

cycle in R. Then there exists a unique square integrable harmonic differential

σ in R such that J y ω = (ω, *σ)R (= JJR co A cr) for all C2 square integrable

closed differentials ω in R. We call σ the reproducing differential for (R, y).

The norm λ= \\σ\\% is called the harmonic module for (R, y). L. V. Ahlfors

[2] noted their significance in the theory of functions of one complex vari-

able. In this paper we shall show their usefulness in that of several complex

variables.

To a complex parameter t in a disk B, we let correspond a covering sur-

face R(t) over the z-plane C with C00 smooth boundary dR(t) and with branch

points ξι(t) (1 < i < q\ where q does not depend on ί e B. Assume that dR(t)

varies C00 smoothly with the parameter tsB and that ξ^t) is a holomorphic

function on B. Thus 01 = \JteB(t9 R{ή) is a ramified Riemann domain over

B x C. We simply denote d0t = \jteB{t, dR{t)\ and write 0t: t -+ R(t\ t e B.

Now let y(i) be a cycle in R(t) which varies continuously with t e B in 0t. As

a Riemann surface, each R(t) with y(r) carries the reproducing differential

σ(ί, •) and the harmonic module λ(t) for (R(t), y{ή). We put ί2(ί, z) = σ(ί, z) +

i*σ{t,z) = f(t,z)dz for z e R(ί) and ||fl||(t,z) = |/(ί,z)|. In [15] and [16] we

showed that: // 01 is pseudoconvex over B x C, ίften >

ί e 5 . Furthermore, the equality holds for all t e B, if and only if $ is Levi

flat. In this paper, for any 0t\t^ R(t), t E B, we shall prove a variation

formula for λ(t) of the second order, which deduces the above result in the

pseudoconvex or Levi flat case. Precisely, let φ(ί, z) be a C2 defining function

of ^ , and put, for (ί, z) e d0t.
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