HIROSHIMA MATH. J. 30 (2000), 403–414

Foliations and divergences of flat statistical manifolds

Keiko Uohashi, Atsumi Ohara and Takao Fujii

(Received July 30, 1998) (Revised November 10, 1999)

ABSTRACT. A Hessian domain $(\Omega, \tilde{D}, \tilde{g} = \tilde{D}d\varphi)$ is a flat statistical manifold, and level surfaces of φ are 1-conformally flat statistical submanifolds of $(\Omega, \tilde{D}, \tilde{g})$. In this paper we consider a foliation defined by level surfaces of φ and its orthogonal foliation, and then we investigate divergences restricted to leaves of these foliations.

1. Introduction

Statistical manifolds have been studied in terms of information geometry. Dualistic structures of statistical manifolds play important roles on statistical inference, control systems theory, and so on [1] [12]. It is known that a *Hessian structure* is a *dually flat structure* and gives, for examples geometry of an exponential family [14]. Applications of the dually flat structures of submanifolds are in [4] [12]. Non-flat statistical manifolds are studied in [6] [7] [8]. It seems that there are not results on *statistical submanifolds* without dually flat structures. So, we treat non-flat dualistic structures on submanifolds, especially on *level surfaces* of *Hessian domain*, and show 1-conformal flatness, if considering a Hessian domain as a flat statistical manifold.

Let φ be a function on a domain Ω in a real affine space \mathbf{A}^{n+1} . Denoting by \tilde{D} the canonical flat affine connection on \mathbf{A}^{n+1} , we set $\tilde{g} = \tilde{D}d\varphi$ and suppose that \tilde{g} is non-degenerate. Then a Hessian domain $(\Omega, \tilde{D}, \tilde{g})$ is a *flat statistical* manifold. In [15] we proved that *n*-dimensional level surfaces of φ are 1-conformally flat statistical submanifolds of $(\Omega, \tilde{D}, \tilde{g})$. Using this fact, we show that dual-projectively equivalent affine connections can be led on a leaf of a foliation \mathcal{F} defined by *n*-dimensional level surfaces of φ on Ω . In addition we study the orthogonal foliation \mathcal{F}^{\perp} of \mathcal{F} .

We also discuss *divergences* on leaves of the foliations \mathscr{F} and \mathscr{F}^{\perp} in §4. Nagaoka and Amari first studied divergences of flat statistical manifolds in view of statistics [1]. Kurose defined the canonical divergences of 1-conformally flat statistical manifolds [7]. In this paper we show that, for $M \in \mathscr{F}$, Kurose's

²⁰⁰⁰ Mathematics Subject Classification. 53A15

Key words and phrases. Flat statistical manifold, 1-conformally flat statistical submanifold, Hessian domain, level surface, divergence.