Extendibility and stable extendibility of vector bundles over real projective spaces

Teiichi Kobayashi and Kazushi Komatsu (Received April 3, 2000) (Revised June 5, 2000)

ABSTRACT. The purpose of this paper is to study the extendibility and the stable extendibility of vector bundles of real projective spaces and those of their complexifications. We determine the dimension m for which the complexification of the tangent bundle of the n-dimensional real projective space RP^n is extendible to RP^m for n = 6 or n > 7, and determine the dimension n for which the square of the tangent bundle of RP^n or its complexification is extendible to RP^m for every m > n.

1. Introduction

Let X be a space and A be its subspace. A t-dimensional F-vector bundle ζ over A is called extendible (respectively stably extendible) to X, if there is a t-dimensional F-vector bundle over X whose restriction to A is equivalent (respectively stably equivalent) to ζ as F-vector bundles, where F is the real number field R, the complex number field C or the quaternion number field C (cf. [8] and [3]). Let C be the C-dimensional Euclidean space, C be the C-dimensional real projective space and C be the tangent bundle of C of C the quaternion number field C or the quaternion number C or the quater

First, we study the question: Determine the dimension m with m > n for which a vector bundle over RP^n is extendible to RP^m . We have obtained the complete answer for the tangent bundle $\tau(RP^n)$ in [4, Theorem 6.6].

For an R-vector bundle and a C-vector bundle over $\mathbb{R}P^n$ we have

THEOREM 1. Let ζ be a t-dimensional R-vector bundle over RP^n . If n < t, ζ is extendible to RP^m for every m with $n < m \le t$.

THEOREM 2. Let ζ be a t-dimensional C-vector bundle over RP^n . If n < 2t + 1, ζ is extendible to RP^m for every m with $n < m \le 2t + 1$.

For the complexification of the tangent bundle $\tau(RP^n)$, we have

²⁰⁰⁰ Mathematics Subject Classification. Primary 55R50; secondary 55N15.

Key words and phrases. vector bundle, extendible, stably extendible, tangent bundle, tensor product, K-theory, KO-theory, real projective space.