The pseudo-convergent sets and the cuts of an ordered field

Daiji Kijima and Mieo Nishi

(Received January 20, 1988)

Let F be an ordered field. A pair (A, B) of subsets of F is called a cut of F if $A \cup B$ $=F$ and $a<b$ for any $a \in A$ and $b \in B$. In this paper we define the breadth of a cut of F which, in some sense, gives a measure of the gap between the lower class and the upper class.

The notion of pseudo-convergence with respect to the finest valuation among all compatible valuations in F plays an important role. Namely we can build up intrinsic relations between the cuts and the pseudo-convergent sets of elements of F. The limit of a pseudo-convergent set is by no means unique and the totality of limits can be described by the breadth of the pseudo-convergent set. We can show that the breadth of a pseudo-convergent set coincides with the breadth of the corresponding cut. As an application we give the following theorem: F has no strongly proper cut (see Definition 1.7) if and only if $A_{0} / M_{0}=R$ and (F, v) is maximal as a valued field, where v is the finest valuation and $\left(A_{0}, M_{0}\right)$ its valuation ring (Theorem 3.7).

§1. The finest valuation and cuts

For an ordered field F, let v be the finest valuation of F. The valuation ring of v is $A_{0}:=A(F, \boldsymbol{Q})=\{a \in F ;|a|<b$ for some $b \in \boldsymbol{Q}\}$. The maximal ideal and the value group of v will be denoted by M_{0} and G respectively. A pair (A, B) of subsets of F is called a cut of F if $F=A \cup B$ and $A<B$.

Definition 1.1. For a cut (A, B) of F, we put $E(A, B)=\{e \in F ; b-a\rangle|e|$ for any $a \in A$ and $b \in B\}$ and we call it the breadth of the cut (A, B). If $A=\phi$ or $B=\phi$, then we put $E(A, B)=F$. The breadth $E(A, B)$ is a convex additive subgroup of F.

The breadth of a cut (A, B) is characterized by $E(A, B)=\{e \in F ; a+|e| \in A$ for any $a \in A\}$ or $E(A, B)=\{e \in F ; b-|e| \in B$ for any $b \in B\}$. It is clear that a cut (A, B) is archimedean (for the definition, see [2], Definition 1.1) if and only if the breadth of (A, B) is zero.

Definition 1.2. For a convex subgroup D of F, we put $A_{1}(D)=F^{-} \backslash D, B_{1}(D)$ $=F^{+} \cup D, A_{r}(D)=F^{-} \cup D, B_{r}(D)=F^{+} \backslash D$, where F^{+}(resp. F^{-}) is the set of positive (resp. negative) elements of F. Clearly $\left(A_{1}(D), B_{1}(D)\right)$ and $\left(A_{r}(D), B_{r}(D)\right)$ are cuts of

