Nonoscillatory solutions of neutral differential equations

Yūki Naito

(Received April 7, 1989)

1. Introduction

In this paper we are concerned with neutral differential equations of the form

\[\frac{d^n}{dt^n} \left[x(t) - h(t)x(\tau(t)) \right] + \sigma p(t)f(x(g(t))) = 0, \]

where \(n \geq 2 \), \(\sigma = 1 \) or \(-1 \), and the following conditions are always assumed to hold:

1. \(\tau(t) \in C[a, \infty) \), \(\tau \) is nondecreasing on \([a, \infty) \), \(\tau(t) < t \) for \(t \geq a \) and \(\lim_{t \to \infty} \tau(t) = \infty \);
2. \(h(t) \in C[\tau(a), \infty) \), \(|h(t)| \leq h < 1 \) for \(t \geq a \), where \(h \) is a constant, and \(h(t)h(\tau(t)) \geq 0 \) for \(t \geq a \);
3. \(p(t) \in C[a, \infty) \) and \(p(t) > 0 \) for \(t \geq a \);
4. \(f(u) \in C((-\infty, \infty) \setminus \{0\}) \) and \(f(u)u > 0 \) for \(u \neq 0 \);
5. \(g(t) \in C[a, \infty) \) and \(\lim_{t \to \infty} g(t) = \infty \).

By a solution of (1.1) we mean a continuous function \(x \) which is defined and satisfies (1.1) on \([T_x, \infty) \) for some \(T_x \geq a \) (so that \(x(t) - h(t)x(\tau(t)) \) is \(n \)-times continuously differentiable on \([T_x, \infty) \)). Such a solution is said to be nonoscillatory if it has no zeros on \([T, \infty) \) for some \(T \geq T_x \).

Recently there has been an increasing interest in the study of neutral differential equations, and a number of results have been obtained. For typical results we refer in particular to the papers [1–9, 14–18]. In this paper we make an attempt to study in a systematic way the structure of the set of nonoscillatory solutions of equation (1.1). In Section 2 we discuss the relation between two functions \(x(t) \) and \(x(t) - h(t)x(\tau(t)) \). The results obtained in Section 2 will be effectively used in subsequent sections. In Section 3 we classify the nonoscillatory solutions of (1.1) into several classes according to the asymptotic behavior as \(t \to \infty \). In Sections 4 and 5 we establish necessary and sufficient conditions for the existence of nonoscillatory solutions of (1.1) with specific asymptotic properties as \(t \to \infty \).