SOME CONDITIONS FOR CONSTANCY OF THE HOLOMORPHIC SECTIONAL CURVATURE

By Susumu Tsuchiya and Minoru Kobayashi

1. Introduction. Let M be a Kaehler manifold with complex structure J and Riemann metric \langle , \rangle . By a plane section σ we mean a 2-dimensional linear subspace of a tangent space of M. If σ is invariant under the action of J, it is called *holomorphic section*. If σ is perpendicular to $J\sigma$, it is called *anti-holomorphic section*. A Kaehler manifold of constant holomorphic sectional curvature is called a *complex space form*. Then the following result is known.

THEOREM A (B. Y. Chen and K. Ogiue). Let M be a Kaehler manifold. If the anti-holomorphic sectional curvatures of M are constant and if dim $M \ge 3$, then M is a complex space form.

In Section 2, we shall define the angle between two linear subspaces of a vector space. Then we shall call a plane section σ a θ -holomorphic section if the angle between σ and $J\sigma$ is θ and the sectional curvature for a θ -holomorphic section the θ -holomorphic sectional curvature. It is clear that a complex space form has constant θ -holomorphic sectional curvatures. Conversely, in Section 3, we shall prove

THEOREM 3. Let M be a Kaehler manifold. If the θ -holomorphic sectional curvatures of M are constant and if $\cos \theta \neq 0$, then M is a complex space form.

Next, the holomorphic bisectional curvature $H(\sigma, \sigma')$ for holomorphic planes σ and σ' is defined by S. I. Goldberg and S. Kobayashi ([2]) as $H(\sigma, \sigma') = \langle R(X, JX)JY, Y \rangle$, where R is the curvature tensor of M and X, Y are unit vector in σ and σ' respectively. We shall call $H(\sigma, \sigma')$ a holomorphic τ -bisectional curvature if the angle between σ and σ' is τ . Then it is clear that a complex space form has constant holomorphic τ -bisectional curvatures. We shall prove

THEOREM 4. Let M be a Kaehler manifold. If the holomorphic τ -bisectional curvatures of M are canstant and if $\tau \neq \frac{\pi}{2}$, then M is a complex space form.

THEOREM 5. Let M be a Kaehler manifold. If the holomorphic $\frac{\pi}{2}$ -bisectional curvatures of M are constant and if dim $M \ge 3$, then M is a complex space form.

Received Dec. 5, 1974.