S. KOBAYASHI KODAI MATH. SEM. REP. 27 (1976), 291–299

SCHWARZ'S LEMMA IN H_p SPACES

By Shōji Kobayashi

§1. Introduction.

Let R be a Riemann surface and let $t \in R$ be any fixed point. For 0 , $let <math>H_p(R)$ denote the class of all functions f analytic on R for which the subharmonic function $|f|^p$ has a harmonic majorant. We put for any $f \in H_p(R)$

(1)
$$||f||_p = (u(t))^{1/p}$$
,

where u is the least harmonic majorant of $|f|^p$ on R. Then, for $1 \le p < \infty$, $H_p(R)$ is a Banach space with the norm $|| ||_p$, and for $0 , <math>H_p(R)$ is not a Banach space but a Fréchet space with the metric d(,) defined by $d(f, g) = ||f-g||_p^p$ $(f, g \in H_p(R))$. Although the "norm" $|| ||_p$ defined by (1) depends on the choice of t, the induced topology does not ([11]). Let $H_{\infty}(R)$ be the Banach algebra of all functions which are analytic and bounded on R, with the uniform norm $|| ||_{\infty}$. These H_p spaces, which generalize the classical Hardy classes in the unit disc, were introduced by Parreau [10] and independently by Rudin [11].

In this paper we are concerned with the problem of maximizing |f'(t)| under the restrictions $f \in H_p(R)$, f(t)=0 and $||f||_p \leq 1$. Let H_p^0 denote the class which consists of all $f \in H_p(R)$ such that f(t)=0 and $||f||_p \leq 1$. We put for 0

$$\alpha_p = \sup_{f \in H_p^0} |f'(t)| .$$

We shall investigate some properties of α_p as a function of p on $(0, \infty]$. It is easily shown by the normal family argument that there exists a function $f \in H_p^0$ for which $f'(t) = \alpha_p$. Such a function is called an extremal function for H_p^0 and denoted by f_p . If $1 , then the uniform convexity of <math>H_p(R)$ implies that f_p is unique for any Riemann surface. It is well known that for any plane region there is a unique extremal function f_∞ for H_∞^0 ([5]). In this paper we shall also investigate the convergence of f_p as p approaches to some p_0 with $1 < p_0 \le \infty$. In Section 5, we shall consider another extremal problem similar to the above one.

I would like to express my deep gratitude to Professor N. Suita for his constant encouragement and helpful suggestions.

Received May 4, 1974.