THE AXIOM OF SPHERES IN KAEHLER GEOMETRY

BY .S. I. GOLDBERG¹⁾ AND E. M. MOSKAL

1. Introduction. Let M be an Hermitian manifold of complex dimension >1 with almost complex structure J and Riemannian metric g. A 2-dimensional subspace σ of M_m , the tangent space of M at m, is called a holomorphic (resp., antiholomorphic) plane if $J\sigma=\sigma$ (resp., $J\sigma$ is orthogonal to σ). M is said to satisfy the axiom of holomorphic (resp., antiholomorphic) planes if for every $m \in M$ and every holomorphic (resp., antiholomorphic) plane σ at m, there exists a totally geodesic submanifold N satisfying $m \in N$ and $N_m = \sigma$. Yano and Mogi [7] showed that a Kaehler manifold satisfying the axiom of holomorphic planes has constant holomorphic curvature. The same conclusion prevails for a Kaehler manifold satisfying the axiom of antiholomorphic planes, as was recently shown by Chen and Ogiue [2].

A Riemannian manifold M of (real) dimension $d \ge 3$ is said to satisfy the axiom of r-spheres $(2 \le r < d)$ if for each $m \in M$ and any r-dimensional subspace S of M_m , there exists an r-dimensional umbilical submanifold N with parallel mean curvature vector field satisfying $m \in N$ and $N_m = S$. This notion was introduced by Leung and Nomizu [6] who proved that a manifold with this property for some fixed r, $2 \le r < d$, has constant sectional curvature. This generalizes the well-known theorem of Cartan [1] concerning the axiom of r-planes.

For an Hermitian manifold M, one of the authors [3] recently introduced the axiom of holomorphic 2-spheres and generalized the theorem of Yano and Mogi. Similarly, Harada [5] has introduced the axiom of antiholomorphic 2spheres and generalized the theorem of Chen and Ogiue.

A subspace S of M_m , where M is an Hermitian manifold, is said to be holomorphic (resp., antiholomorphic) if JS=S (resp., JS is orthogonal to S). Let $d=\dim_C M$.

Axiom of holomorphic 2r-planes (resp., 2r-spheres). For each $m \in M$ and 2rdimensional holomorphic subspace S of M_m , $1 \leq r < d$, there exists a totally geodesic submanifold (resp., umbilical submanifold with parallel mean curvature vector field) N satisfying $m \in N$ and $N_m = S$.

Axiom of antiholomorphic r-planes (resp., r-spheres). For each $m \in M$ and r-dimensional antiholomorphic subspace S of M_m , $2 \leq r < d$, there exists a totally geodesic submanifold (resp., umbilical submanifold with parallel mean curvature

Received April 10, 1974.

¹⁾ Research partially supported by the National Science Foundation.