SINGULAR SETS OF SOME INFINITELY GENERATED KLEINIAN GROUPS

Dedicated to Professor Yûsaku Komatu on his 60th birthday

BY TOHRU AKAZA AND EIICHI SAKAI

§1. Preliminaries and Notations.

1. Let $\{K_j\}_{j=1}^p$ and $\{H_i, H'_i\}_{i=p+1}^\infty$ be an infinite number of circles external to one another in the extended complex plane $\tilde{C} = \{z; |z| \leq \infty\}$, where $\{H_i, H'_i\}_{i=p+1}^q$ tend to only a finite point Q for $q \to \infty$. Let B be a domain bounded by these circles. Without loss of generality we may assume that these circles are contained in some closed disc $D_0 = \{z; |z| \leq \rho_0\}$.

Let $\{T_j\}_{j=1}^p$ be the elliptic transformations with period 2 corresponding to $\{K_j\}_{j=1}^p$, each of which transforms the outside of K_j onto the inside of itself. Let $\{T_i\}_{i=p+1}^\infty$ be the system of hyperbolic or loxodromic transformations, each T_i of which transforms the outside of H'_i onto the inside of H_i . Then the system $\mathfrak{G} = \{T_i, T_i^{-1}\}_{i=1}^\infty$ $(T_i = T_i^{-1}, 1 \leq i \leq p)$ generates an infinitely generated discontinuous group denoted by G and we call \mathfrak{G} the generator system of G, where T_i^{-1} denotes the inverse of T_i .

The purpose of this paper is to investigate the singular set E of G. Take a positive integer $q \ (>p)$ and consider a subset $\mathfrak{G}_N = \{T_j\}_{j=1}^p \cup \{T_i, T_i^{-1}\}_{i=p+1}^q (N=2q-p)$ of \mathfrak{G} . Then \mathfrak{G}_N generates a finitely generated subgroup G_N of G. If we denote by B_N a domain bounded by $\{K_j\}_{j=1}^p \cup \{H_i, H_i'\}_{i=p+1}^q (N=2q-p)$, it is well known that B_N coincides with a fundamental domain of G_N . We gave some results with respect to the singular set E_N of G_N by using the relations between E_N and the computing functions on G_N ([1]). We shall get G from G_N for $N \to \infty$. It is natural to try whether we can extend the results for G_N to ones for G. Unfortunately, we can not extend those in the same way, for the behavior of the accumulation of the circles to Q gives the complicated difficulty. Therefore we must impose some restrictions with respect to the accumulation of circles and henceforth we shall consider only such groups.

2. Denote by r(H) the radius of a circle $H \in \{H_i, H_i^{\prime}\}_{i=p+1}^{\infty}$ and assume that there exists some positive constant K independent of H such that it holds

(A)
$$\frac{r(H)}{l(H)} \leq K$$

Received Jan. 26, 1974.