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Recently, 3-structures, almost contact, /^-contact or Sasakian (normal contact),
have been introduced and several interesting subjects concerning these structures
have been studied ([3], [4], [5], [6], [8], [9], [13]). The 3-structure, ^-contact or
Sasakian, is a special kind of triples of Killing vectors, which will be defined in
the present paper as a set of three unit Killing vectors f, η and ζ being mutually
orthogonal and satisfying the structure equations [η, ζ] = 2f, [ζ, ξ] = 2η, [?, >?] = 2ζ.
One of purposes of the present paper is to obtain, in terms of curvatures, a con-
dition that a triple of Killing vectors is a Sasakian 3-structure.

In § 1, we recall definitions and properties of structures, ^-contact or Sasakian.
We define also in § 1 a triple of Killing vectors and give its preliminary properties.
In §2, we give fundamental concepts and divices concerning fibred Riemannian
spaces with triple of Killing vectors. We state, in § 3, some propositions concerning
triples of Killing vectors or K-contact 3-structures as consequences of formulas
established in § 2. The last § 4 is devoted to studying properties of Nijenhuis tensor
of structure tensor fields determined by a triple of Killing vectors or a X~-contact
3-structure.

§ 1. Preliminaries.

First, we recall some properties of a X"-contact structure. Let (M, g) be a
Riemannian manifoldυ of dimension n with metric tensor g. Let there be given
in (M, g) a unit Killing vector ξ satisfying

(1.1) K(ξ,X)ξ=-X + a(X)ξ,

where K denotes the curvature tensor of (M, g) and a the 1-form associated with
ξ, i.e., a(X) = 9(ξ, X).^ Then ζ is said to define a K-contact structure (cf. [2]). If
we put, for a K-contact structure ξ,
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1) Manifolds, vector fields and geometric objects we discuss are assumed to be dif-

ferentiable and of class C°°.

2) Here and in the sequel, X, Ϋ and Z denote arbitrary vector fields in M
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