FUNCTIONAL CENTRAL LIMIT THEOREMS FOR STRICTLY STATIONARY PROCESSES SATISFYINC THE STRONG MIXING CONDITION

By Hiroshi Oodaira and Ken-ichi Yoshihara

1. Summary.

The object of this paper is to prove the functional central limit theorems for strictly stationary processes satisfying the strong mixing condition under the same assumptions in Ibragimov [3]. The results generalize those of Davydov [2].

2. Main results.

Let $\{\xi_n; n=0, \pm 1, \pm 2, \dots\}$ be a strictly stationary process with $E\xi_j=0$, satisfying the strong mixing (s. m.) condition, i.e.,

(1)
$$\sup_{A \in \mathfrak{M}^{a}_{-\infty}, B \in \mathfrak{M}^{\infty}_{a+s}} |P(AB) - P(A)P(B)| = \alpha(s) \to 0 \quad (s \to \infty),$$

where \mathfrak{M}_{a}^{b} denotes the σ -algebra generated by $\{\xi_{j}; j=a, \dots, b\}$. Write $S_{n}=\xi_{1}+\dots+\xi_{n}$ and $\sigma^{2}=E\xi_{0}^{2}+2\sum_{j=1}^{\infty}E\xi_{0}\xi_{j}$. Let D=D[0,1] be the space of functions x on [0,1] that are right-continuous and have left-hand limits, and let \mathcal{D} be the σ -field of Borel sets for the Skorokhod topology (cf. [1]). When $0 < \sigma < \infty$, we define random elements $X_{n}(t)$ of D by

(2)
$$X_n(t,\omega) = \frac{1}{\sigma\sqrt{n}} S_{[nt]}(\omega), \qquad 0 \leq t \leq 1; \ n=1,2,\cdots$$

The following theorems imply that functional central limit theorems hold under the same conditions of theorems 1.6 and 1.7 in [3] which assure the validity of central limit theorems.

THEOREM 1. If ξ_j 's are bounded, i.e., $|\xi_j| < C < \infty$ with probability one and if

(3)
$$\sum_{n=1}^{\infty} \alpha(n) < \infty \quad and \quad \alpha(n) \leq \frac{M}{n \log n},$$

then $\sigma^2 < \infty$. If $\sigma > 0$ and if X_n is defined by (2), then the distribution of X_n converges weakly to Wiener measure W on (D, \mathcal{D}) .

Received May 20, 1971.