KŌDAI MATH. SEM. REP. 23 (1971), 267–275

EXTREMAL PROPERTIES OF QUASIHARMONIC FORMS AND FUNCTIONS

By Kazumitsu Kawai and Leo Sario

The purpose of the present paper is to deduce extremal properties of differential forms φ satisfying the differential equations

$$\delta dT \varphi + PT \varphi = 0$$

or

 $\delta dT\varphi + d\delta S\varphi = 0$

on a Riemannian space. For suitable choices of the operators T and S and the nonnegative function P we obtain, in a unified manner, extremal properties of harmonic, semiharmonic, cosemiharmonic, quasiharmonic, and coquasiharmonic forms, and harmonic, P-harmonic, quasiharmonic, and P-quasiharmonic functions.

§1. Fundamentals.

1. Let F(u, v) be a bilinear form on a real linear space V, and set F(u)=F(u, u). Consider a subset H of V such that for each $h \in H$, $F(h) \ge 0$. For a fixed $u \in V$ set v=u+h for $h \in H$. We characterize u by an extremal property.

The function u minimizes the functional $\{F(v)-F(h, u)-F(u, h)\}$ and the minumum is F(u):

(1)
$$F(v)-F(h, u)-F(u, h)=F(u)+F(h).$$

If F is an inner product, set

(2)
$$F(u, v) = [u, v], \qquad |||u^2||| = [u, u].$$

The function u minimizes the functional $\{|||v|||^2-2[h, u]\}$ among all $v \in V$ with h=v-u, and the minimum is $|||u|||^2$:

$$(3) \qquad \qquad |||v|||^2 - 2[h, u] = |||u|||^2 + |||h|||^2.$$

We specialize further.

Received October 5, 1970.

This work was sponsored by the U.S. Army Research Office-Durham, Grant DA-ARO-D-31-124-70-G7, University of California, Los Angeles.