ON THE SOLUTION OF THE FUNCTIONAL EQUATION
 $f \circ g(z)=F(z)$, III

By Mitsuru Ozawa

In our previous papers [3], [4] we discussed transcendental entire solutions of the functional equation $f \circ g(z)=F(z)$ and gave several transcendental unsolvability criteria, which based upon the existence of a Picard exceptional value, perfectly branched values, finite asymptotic paths and so on. All the criteria proved there do not work when F is an entire function of order less than $1 / 2$ and even when $F(z)$ is $1 / \Gamma(z)$. In this note we shall give a very useful criterion, which is based upon an elegant theorem due to Edrei [2] and which does work to some entire functions of order less than $1 / 2$ and to $1 / \Gamma(z)$ and the n-th Bessel function $J_{n}(z)$. And we shall give certain variants of this result. Further we shall give several criteria based upon Denjoy-Carleman-Ahlfors theorem.

Let $f(z)$ be an entire function and $M_{f}(r)$ its maximum modulus on $|z|=r$. We shall use the following notations:

$$
\rho_{f}=\varlimsup_{r \rightarrow \infty} \frac{\log \log M_{f}(r)}{\log r}, \quad \lambda_{f}=\lim _{r \rightarrow \infty} \frac{\log \log M_{f}(r)}{\log r}
$$

and

$$
\hat{\rho}_{f}=\varlimsup_{r \rightarrow \infty} \frac{\log \log \log M_{f}(r)}{\log r}, \quad \hat{\lambda}_{f}=\lim _{r \rightarrow \infty} \frac{\log \log \log M_{f}(r)}{\log r} .
$$

Lemma 1. [4]. $\rho_{f}<\infty$ implies $\hat{\rho}_{f \cdot g} \leqq \rho_{g}$.
Lemma 2. $\lambda_{f}>0$ implies $\hat{\rho}_{f_{0 g}} \geqq \rho_{g}$ and $\hat{\lambda}_{f o g} \geqq \lambda_{g}$.
Proof. By Pólya's method we have

$$
M_{f_{\circ g}(r)} \geqq M_{f^{\circ}}\left(d M_{g}\left(\frac{r}{2}\right)\right)
$$

for a constant $d, 0<d<1$. For a sufficiently small positive number ε there is an r_{0} such that for $r \geqq r_{0}$

$$
\log \log M_{f}(r)>\left(\lambda_{f}-\varepsilon\right) \log r
$$

and there is a sequence $\left\{r_{n}\right\}$ of radii such that
Received November 6, 1967.

