By Takayuki TAMURA and Naoki KIMURA

§ 1. Let us consider letters x_i , x_2 , ..., x_n placed in a row permitting repetition, for example, $x_2 \chi_i^2 \chi_j^3 \chi_n \chi_1 \cdots \chi_{n-1}^4$. Such a form is called a monomial of x_1 , ..., x_n and is denoted by $f(x_1, \cdots, x_n)$ etc. If x_1 , ..., x_n are adopted as elements of a semigroup \top , then $f(x_1, \cdots, x_n)$ represents a product of elements in \top . Suppose that a semigroup \top fulfils a suitable system of equalities:

 $f_{\lambda}(x_1, \cdots, x_n) = g_{\lambda}(x_1, \cdots, x_n), \quad \lambda \in \Lambda$

for all
$$\chi_1, \dots, \chi_n \in T$$
.

where χ_1 , ..., χ_n vary independently and each side of the equalities needs not contain all of letters χ_1 , ..., χ_n , but letters appearing in both sides are χ_1 , ..., χ_n ; for example, $f_1(\chi, y) = \chi y$, $g_1(\chi, y) = \chi$. Then \top is called a semigroup with monomial conditions $f_\lambda = g_\lambda$, $\lambda \in \Lambda$. Of course a one-element semigroup $\{\chi\}$ is one of this kind. In this short note, we shall prove the

existence of greatest decomposition of a semigroup g to a semigroup T with $f_{\chi} = g_{\chi}$, $\chi \in \Lambda$, which turns out to be an expansion of the theorem in the previous paper [1].

§ 2. Now let D be all decompositions of S to a semigroup T with $f_{\lambda}=g_{\lambda}$, $\lambda\in\Lambda$, and $\not\leq$ be a congruence realation arising $d\in D$. The following lemma is clear.

Lemma 1. d is a congruence relation arising a decomposition d of S to a semigroup \top with $f_{\lambda} = g_{\lambda}$, $\lambda \in \Lambda$, if and only if (1) $\chi d \chi$, (2) $\chi d \chi$ implies $\chi d \chi$, (3) $\chi d \chi$ implies $\chi_{\Sigma} d \chi_{\Sigma}$ and

(4)

$$z_{x} d_{z_{1}}$$
, $(x_{1}, x_{2}, \dots, x_{n}) d_{x} \mathcal{B}_{\lambda}(x_{1}, x_{2}, \dots, x_{n})$, $\lambda \in \Lambda$.

Theorem. D is a complete lattice.

Proof. We define $d_\alpha \gtrsim d_\beta$ to mean that x day implies x day . Then D is a partly ordered set and D contains a least element, i.e. a mapping of all elements of S into one class. In order to verify that D is a complete lattice, it is sufficient to show that any subset \mathcal{D}' of \mathcal{D} has a least upper bound in D [2]. Now we define $x \stackrel{d}{\sim} y$ to mean $x \stackrel{d}{\sim} y$ for all $d \in D'$. Since every d is a congruence relation, it is proved easily that d_{i} is also so, that is, (1) x dr, (2) x dy implies y dx (3) x dy implies x z dy and z x d zy. $f_{\lambda}(\chi_1,\chi_2,\chi_n) \xrightarrow{d_1} g_{\lambda}(\chi_1,\chi_2,\dots,\chi_n)$ Moreover because $f_{\lambda}(\chi_1, \chi_2, \dots, \chi_n) \stackrel{d}{\leftarrow} \mathcal{G}_{\lambda}(\chi_1, \chi_2, \dots, \chi_n)$ for all deD'. Obviously x dy implies $x \not \leq y$ for all $d \in D'$; hence a decomposition d, is an upper bound of D' . Let d'_{i} be any upper bound of D'_{i} . Then $x \not \leq y$ implies $x \not \leq y$ for all $i \in D'$ so that $x \not e y$, that is to say, $i(z, t_i)$; d, is a least upper bound of D' . Thus the proof of the theorem has been completed. Accordingly we have

Corollary. There is a greatest decomposition of a semigroup g to a semigroup τ with $f_{k} = g_{k,p} \ \lambda \in \Lambda$.

§ 3. We shall give several important examples of \top .

Left singular semigroup, i.e.,
 a semigroup satisfying x_{d=x}

 $f_i(x, y) = xy$, $g_i(x, y) = x$.

Right singular semigroup, i.e. a semigroup satisfying ,

 $f_{1}(x, y) = xy$, $g_{1}(x, y) = y$.

2. Commutative semigroup,

 $t_1(x,y) = xy$, $g_1(x,y) = yx$.