By Yûsaku KOMATU and Han NISHIMIYA.
0. Several distortion theorems hive been derlved, in various ways, for functions regular and schlicht in a circle. In the present Note we shall attempt certain estimations about their spherical derivative. The aim is to obtain estimates of spherical derivative, denenaine only on $x=1 \% 1$ for family of functions regular, schlicht in the uat circle $|z|<1$ and normalized at the origin. The results which will be obtained in the following lines are only partially precise. In fact, although the best possible bounds together with extremal functions can be found for points z comparatively near the sutidin, the precise bounds for retainng points are yet unknown. But it will be noteworthy to remark that the precise bounds are not analytic in the whole name of z .
on the other hand, the eoncept of aphaxical derivative is really rather destul for meromorphic functions than serely for regular functions. But, in comparison with rich results in the cneory of schlicht functions regular in a circle, those referring to schlicht buctions meromorphic in a circle are still poor. Making use of invariant character of spherical derivative with resrect to any rotation of Riemann spiere, distortion inequalities will be derived for spherical derivative of certain schlicht functions meromorphic in a circle.

1. The spherical derivative of an inalytic function $W(Z)$ is defined as

$$
\text { (1.1) } \quad \operatorname{DW}(z) \equiv \frac{\left|w^{\prime}(z)\right|}{1+|w(z)|^{2}} \text {, }
$$

if z is a pole of the first order with residue C or of higher order, we put $D W=1 / 1 c \mid$ or $D W=0$, respectively.

Consider first the family of functicns $\left\{\begin{aligned} \text { Cons } \\ \text { z })\} \\ \text { regular and schlicht }\end{aligned}\right.$ in $|z|<1$ and normalized at the orlgin such as
$\because 2: \quad W(0)=0, \quad W^{\prime}(0)=1$.
We shail attempt to estimate the spherical derivative of such functions from uots. jldes. Now, as is well-knowr, the :lass:aj distortion theorems

$$
\begin{aligned}
& \text { (: : } \frac{T}{(1+r)^{2}} \leqq|w(z)| \leqq \frac{x}{(1-x)^{2}} \text {, } \\
& \text { (a. (a) } \frac{1-t}{1+\tau} \leqslant\left|\frac{2(z)(z)}{w(2)}\right| \leqq \frac{1+x}{1-t} \text {. }
\end{aligned}
$$

due to Koebemieberbach and to $R_{\text {. }}$
Nevanilima raspectively, holid good for asy functions of the PRinily. Moxucivers, for ary \% with $0<r=1 \mathrm{z}$!
the equality sign of left and right side is, in each case, realized only by Koebe's extremal function

$$
\text { (1.5) } \quad W=\frac{z}{(1+\varepsilon z)^{2}} \quad(|\varepsilon|=1),
$$

and, in fact, merely at $z=\bar{\varepsilon}|z|$
and $z u-$ En|z|, respectively.
Denoting now, for brevity, by
(1.6) $\quad T^{*}=\frac{\sqrt{5}-1}{2}=0.618$.
the positive root of the quadratic
equation $\quad 1-x^{2}=x$ we get
with regard to both bounds contained
in Koebe-Bieberbach's distortion theorem (1.3), the relations

$$
\begin{aligned}
& \text { (1.1) } \frac{x}{(1+x)^{2}} \leqq \frac{x}{(1-x)^{2}} \leqq 1 / \frac{x}{(1+x)^{2}} \quad\left(x \leqq x^{*}\right), \\
& \left(1.8 ; 1 / \frac{x}{1-x)^{2}}<\frac{x}{(1+x)^{2}}<\frac{x}{(1-x)^{2}} \quad\left(x^{\mu}<\dot{x}<1\right) .\right.
\end{aligned}
$$

Hence, if $T \equiv|z| \leqq T^{*}$, we have

$$
\frac{\gamma}{(1-x)^{2}}+\frac{(1-x)^{2}}{Y} \leqq|x|+\frac{1}{\mid-1} \leqq \leqq \frac{x}{(1+x)^{2}}+\frac{(1+x)^{2}}{x},
$$

or
(1.9)

$$
\frac{r^{2}+(1-r)^{4}}{r(1-1)^{2}} \leqq \frac{1+|w|^{2}}{|w|} \leqq \frac{r^{2}+(1+r)^{4}}{r(1+r)^{2}}\left(r \leqq r^{*}\right) .
$$

Combining both relations (1.4) and
(1.9), we obtain for spherical derivative which may be written in the form

$$
\operatorname{Dr}(z)=\left|\frac{w^{\prime}}{w}\right| \frac{|w|}{1+\left|w^{-}\right|^{2}},
$$

the following estimation:

$$
\text { (1.10) } \quad \frac{1-r^{2}}{T^{2}+(1+T)^{4}} \leqq \operatorname{Dr}(z) \leqq \frac{1-r^{2}}{r^{2}+(1-r)^{4}} \quad\left(I \leqslant r^{*}\right)
$$

The extremal functions for this distortion inequality must, as readily seen from the above argument, be of the form (1.5). For such a function the actual calculation shows that

$$
\begin{aligned}
W=\frac{z}{(1+\varepsilon z)^{2}}, \quad w^{\prime} & =\frac{1-\varepsilon z}{(1+\varepsilon z)^{3}} ; \\
\text { (1.11) } \quad D W & =\frac{\left|w^{\prime}\right|}{1+|w|^{2}}=\frac{\mid 1}{|z|^{2}+|z+\varepsilon z|^{\prime}},
\end{aligned}
$$

and hence the left and sight bound in
(3.10) is indeed attained at, $z=\pi \cdot T$ and $z=-T ₹$ and only at these pointis, reapeotivély.

We note hore, in passins, that the same is valid for distortion inequality

