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I. The following theorem of Σty-gmund
on lacunary trigonometric series is
well known .
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Ve shall prove that a theorem of
same type is valid, even if the inte-
gral character of the numbers is
not assumed.
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Ve shall prove more strong results
than Theorem 1, that ±s;
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2. Proof of Theorem 1. The almost
everywhere convergence are already pro-
ved by M Kac,** and so we shall prove
the inequality (3).

By Holder's inequality, if T < T ,
we have
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Moreover it is well known that if
we prove the inequality
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