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I. The following theorem of Zygmund
on lacunary trigonometric series is
well known,')
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We shall prove that a theorem of

same type is valid, even if the inte-
gral character of the numbers 1s

not assumed.
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Theorem 3, der the conditions of
Theorem 1, the series converges in
the mean with exponent Y  over every
finite interval to x> .

We shall prove more stronmg results
than Theorem 1, that is;

Theorem 4, If the con ons of
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Theorem 5. Under the conditions of
Theorem 4, we have
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Proof of Theorem 1., The almost
everywhere convergence are already pro-

ved by M.Kac,® and so we shall prove
the inequality (3)

By Holder'!s inequality, if <71
we have
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Moreover it is well known that if
we prove the inequality
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