HOLOMORPHIC ISOMORPHISM WHICH PRESERVES CERTAIN HOLOMORPHIC SECTIONAL CURVATURE

By Minoru Kobayashi and Susumu Tsuchiya

1. Introduction. Let (M, g) and (\bar{M}, \bar{g}) be two Riemannian manifolds. Denote the corresponding sectional curvatures by K and \bar{K} respectively. A diffeomorphism f from M to \bar{M} will be said to be curvature preserving if and only if for every $p \in M$ and for every 2-plane σ in the tangent space $T_{p}(M)$ to M, we have

$$
K(\sigma)=\bar{K}\left(f_{*} \sigma\right) .
$$

It is natural to ask whether a curvature preserving diffeomorphism is isometric or not. The answer to this question was first given by R.S. Kulkarni as follows;

Theorem ([2]). If M is an analytic Riemannian manıfold with dimension $\geqq 4$, then a curvature preserving diffeomorphism $f: M \rightarrow \bar{M}$ is an isometry except in the case that both M and \bar{M} have the same constant curvature.

In the case where both of (M, g) and (\bar{M}, \bar{g}) are Kaehlerian manifolds, we may expect that a holomorphic sectional curvature preserving diffeomorphism is a isometry. Indeed he proved

Theorem ([4]). Let M and \bar{M} be connected Kaehlerian manifolds with corresponding holomorphic sectıonal curvature functions H and \bar{H} respectively. Suppose that $\operatorname{dim} M \geqq 2$ and there exists a diffeomorphism $f: M \mapsto \bar{M}$ such that $f^{*} \bar{H}=H$. Then either $H=\bar{H}=$ const. or f is holomorphic or anti-holomorphic isometry.

On the other hand, in our previous paper ([5]), we defined the θ-holomorphic sectional curvature and the τ-bisectional curvature and showed that the constancy of the holomorphic sectional curvature is equivalent to that of the θ-holomorphic sectional curvature or to that of the holomorphic τ-bisectional curvature. It is then quite natural to ask whether a θ-holomorphic sectional curvature preserving or a holomorphic τ-bisectional curvature preserving diffeomorphism is isometric or not. Concerning this problems, we shall prove the following two theorems. We shall define in Section 3 what are called θ-holomorphically isocurved Kaehlerian manifolds and what are called τ-bisectionally isocurved Kaehlerian manifolds.

Received June 26, 1976.

