HOLOMORPHIC ISOMORPHISM WHICH PRESERVES CERTAIN HOLOMORPHIC SECTIONAL CURVATURE

By Minoru Kobayashi and Susumu Tsuchiya

1. Introduction. Let (M,g) and (\bar{M},\bar{g}) be two Riemannian manifolds. Denote the corresponding sectional curvatures by K and \bar{K} respectively. A diffeomorphism f from M to \bar{M} will be said to be curvature preserving if and only if for every $p{\in}M$ and for every 2-plane σ in the tangent space $T_p(M)$ to M, we have

$$K(\sigma) = \bar{K}(f_*\sigma)$$
.

It is natural to ask whether a curvature preserving diffeomorphism is isometric or not. The answer to this question was first given by R.S. Kulkarni as follows:

THEOREM ([2]). If M is an analytic Riemannian manifold with dimension ≥ 4 , then a curvature preserving diffeomorphism $f: M \mapsto \overline{M}$ is an isometry except in the case that both M and \overline{M} have the same constant curvature.

In the case where both of (M,g) and (\bar{M},\bar{g}) are Kaehlerian manifolds, we may expect that a holomorphic sectional curvature preserving diffeomorphism is a isometry. Indeed he proved

Theorem ([4]). Let M and \overline{M} be connected Kaehlerian manifolds with corresponding holomorphic sectional curvature functions H and \overline{H} respectively. Suppose that $\dim M \geq 2$ and there exists a diffeomorphism $f \colon M \mapsto \overline{M}$ such that $f \ast \overline{H} = H$. Then either $H = \overline{H} = const.$ or f is holomorphic or anti-holomorphic isometry.

On the other hand, in our previous paper ([5]), we defined the θ -holomorphic sectional curvature and the τ -bisectional curvature and showed that the constancy of the holomorphic sectional curvature is equivalent to that of the θ -holomorphic sectional curvature or to that of the holomorphic τ -bisectional curvature. It is then quite natural to ask whether a θ -holomorphic sectional curvature preserving or a holomorphic τ -bisectional curvature preserving diffeomorphism is isometric or not. Concerning this problems, we shall prove the following two theorems. We shall define in Section 3 what are called θ -holomorphically isocurved Kaehlerian manifolds and what are called τ -bisectionally isocurved Kaehlerian manifolds.

Received June 26, 1976.