ON SOME OPERATIONS IN THE BORDISM THEORY WITH SINGULARITIES

By Nobuaki Yagita

§ 1. Introduction.

In [11], Sullivan constructed the bordism theory with singularities. Let S be a closed manifold. Then in this theory " \overline{W} is a closed manifold with singularities of type S" means

$$\overline{W} = W \cup (\text{cone } S) \times L \text{ (along boundary)}$$

where W is a manifold with $\partial W \cong L \times S$ and L is a closed manifold. Then we can define a bordism operation Q_S by $Q_S(\overline{W}) = L$. In this paper, we study this operation.

Throughout this paper, let manifolds be stable almost complex manifolds. For finite complex X the bordism group $MU(S)_*(X)$ is defined by the bordism classes of maps from closed manifolds with singularities of type S to X.

By taking the stratification of singularities, Sullivan also defined the theory when singularity is a set of manifolds and proved that the ordinary mod p homology theory is the bordism theory with singularities of type (p, x_1, x_2, \cdots) i.e. $H_*(X; Z_p) \cong MU(p, x_1, x_2, \cdots)_*(X)$ where x_i denote 2i-dimensional ring generators of $MU_*(S^0) = MU_*$. By using the Quillen's theorem [9], we shall show $H_*(X; Z_p) \otimes Z_p[\cdots, x_i, \cdots] \cong MU(p, v_1, v_2, \cdots)_*(X)$ where v_i denote x_pi_{-1} which are Milnor manifolds for a fixed prime p.

Let I_n be the set (p, v_1, \cdots, v_n) and let $MU(I_n)$ be the spectrum of the theory $MU(I_n)_*(-)$. We denote by Q_i' the Spanier-Whitehead dual operation of Q_{v_i} . Our main results of this paper are as follows

Theorem 3.4. If $y \in H^*(X; Z_p)$ then $\lambda Q_i'(y) = Q_i(y)$ for some $\lambda \neq 0 \in Z_p$, where Q_i is the Milnor exterior operation.

THEOREM 4.1. $MU(I_n)^*(MU(I_n)) \cong MU^*/I_n \bigotimes MU^*(MU) \otimes \Lambda[Q_0'', \cdots, Q_n'']$. where Q_i'' are cohomology operations which satisfies $Q_i''(y) = Q_i'(y)$ for each finite complex X and each element $y \in MU(I_n)^*(X)$.

In this paper we always assume that p is a fixed prime number, (co)homology theories are reduced theories and X is a finite complex.

Received January 29, 1976.