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PREFACE.

The whole thesis consists of three
chapters. In chapter I, we deal with
the structure of Rational Functions at
various places of the Riemann - Surface
of an Algebraic Function and deduce some
new results It also serves as an in-
troduction to the rest of the chapters*

The second chapter consists of three
parts* the first one gives three theo-
rems concerning the structure of the
branching of the iiiemann - Surface of
the Fundamental Equation» The second
one deals with the investigation of the
differential coefficient of an Algebraic
Function* This produces a result which
is an improvement over the result al-
ready published by Beatty* The third
part is merely to show how to extend
these results to all algebraically clo-
sed fields of characteristic zero.

Chapter III consists of two main
parts. The first part is a proof of
the Riemann - Roch Theorem, and the
second is its applications* A new me-
thod of proof for the Riemann - Roch
Theorem based mostly on the ideas of
analysis is given* In doing so import-
ant new theorems are introduced. In
the second part*it is demonstrated that
some of the well-known results in the
Algebraic Function Theory are easily
deduced by the application of the new
method*

References' to various chapters are
given at the end of the thesis in the
Bibliography.

CHAPTiSR I .

i n the form

THEOREMS ON THE STRUCTURE OF RATIONAL
ALGE3RAT0 FUNCTIONS. *""

l Let

s o be an irreducible al-
gebraic equation ( $A are rational
functions in z with coefficients in
the field of complex numbers ft )

P

defining the field of rational functions
fe(£, w, )• If α,-β e le is a solution of

it ~ α = jb

where Λ, <r are integers and <r>o
Such a pair of functions (a) is called
a place-representation of the Rlemann-
Surface of the Algebraic Function.

2. Value of a Rational Function
at a Place.

Let a Rational Function R C Z . U ) e f? fe.u.)
Let -rr be given by a place-representa-
tion (a) In virtue of the substitu-
tion (a), we have at TΓ ,

w h θ r θ
 cu*o.

If P > Q , then K(τr) is said to have
zero of order p at the place TΓ ,
and p<o is said to have a pole of
order -f at the place, and p=o> R(τr)
is regular.

3. At every place of the Riemann-
Surface of the Algebraic Function, any
rational function R(z,u) has either a
pole, or a zero of some definite order
or is regular in the sense of paragraph
2* Also every rational function τ(
has a unique divisor except for a con-
stant. This can be represented sym-
bolically as

where P, ••• P
t
 are places at which

the rational function η has zeros
of order y, ,.--, ̂ andQ,

r
.. Q^ are places

at which it has poles of order Λ, --.^

4. At every cycle Q of QL
A
 of the

denominator, the expansion for the ra-
tional function 71 has the form,

then there ex5sts a formal power series,
solution of

where β is a constant different from
zero* At other cycles this expansion

fhas the form,

η -= oL -f β t *
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