FABER'S POLYNOMIALS.

By Shohei NAGURA.

(Communicated by Y. Komatu.)

§1. Fundamental Identities.

The following method in § 1 can be proceeded verbatin for more general and even for multiply-connected domains, but in this Note we suppose the boundary of domain is the unit circle in order to apply our results for the coefficient problem.

Let g(z) be a meromorphic, schlicht and non-vanishing function in the exterior of the unit circle |z| > 1, and whose Laurent expansion about the point at infinity is of the form

(1)
$$g(z) = z + \sum_{\nu=0}^{\infty} \frac{c_{\nu}}{z^{\nu}}.$$

Then $f(z) \equiv 1/g(1/z)$ is regular and schlicht in the unit circle |z| < 1 and, about the origin, it can be expanded in the form

(2)
$$f(z) = z + \sum_{\nu=2}^{\infty} a_{\nu} z^{\nu}$$

Let $I_n(z)$ $(n=1,2,\cdot)$ be polynomial of z of degree n, which satisfies the condition

(3)
$$P_n(g(z)) = z^n + \sum_{v=1}^{\infty} \frac{\alpha_v^{(n)}}{2^v}$$

Then, $P_n(z)$ is called the "Faber's polynomial" of degree n with respect to g(z). By means of the Cauchy's integral formula, we have

(4)
$$P_n(w) = \frac{1}{2\pi i} \int_{|\zeta| = \gamma} \frac{P_n(\zeta)}{\zeta - w} d\zeta,$$

where $\,\omega\,$ is an arbitrary point in the circle $|\zeta| < T$. Making the change of variable $\zeta = \Im(x)$, we get, for sufficiently large $\,T$,

(5)
$$P_m(w) = \frac{1}{2\pi i} \int_{|z|=r} P_m(g(z)) dlg(g(z) - w)$$

On the other hand, we can easily prove

(6)
$$0 = \frac{1}{2\pi i} \int_{|\alpha| = T} \frac{P_n(q(\alpha))}{\alpha} d\alpha$$
$$= \frac{1}{2\pi i} \int_{|\alpha| = T} P_n(q(\alpha)) d\log \alpha,$$

by virtue of (3). Hence, substracting (6) from (5), we have

(7)
$$P_n(w) = \frac{1}{2\pi i} \int_{|z|=r} P_n(g(z)) d \lg \frac{g(z)-w}{z}$$

Now, putting

(8)
$$\lg \frac{g(z) - w}{z} = -\sum_{v=1}^{\infty} \frac{Q_v(w)}{v} \frac{1}{z^v}$$

and substituting (8) into (7), we obtain

$$(9) P_n(w) = Q_n(w).$$

Since (9) holds for infinitely many values of w if we take a sufficiently large r, also does (9) hold good identically. After all, we have the following fundamental relation: (2)

(10)
$$\lg \frac{g(z) - w}{z} = -\sum_{v=1}^{\infty} \frac{P_{v}(w)}{v} \frac{1}{z^{v}}$$

for an arbitrary w , the logarithm always denoting the branch which vanishes for w=0 and $z=\infty$.

Putting $\zeta=1/\mathcal{L}$, $g(z)=1/f(\zeta)$, and comparing the coefficients of both sides of (10), we have

$$P_{n}(z) = n \sum_{\mu=1}^{n} \left(\sum_{n_{1}+\cdots+n_{\mu}=n} a_{n_{1}} \cdot a_{n_{\mu}} \right) \frac{z^{\mu}}{\mu} + P_{n}(0),$$

and in particular $P_n(0) = n a_n$. Differentiating (10) with respect to z and making use of the same reason as above, we obtain

$$\begin{array}{ccc} P_{1}(z) = z - c_{0}, \\ P_{n+1}(z) + (c_{0} - z)P_{n}(z) + \sum_{\mu=1}^{n-1} c_{\mu} P_{n-\mu}(z) + (n+1)c_{n} = 0 \\ P_{n+1}(z) + P_{n}(z) + P$$

§2. Some Applications to the Distortion Theorems.

Putting

(13)
$$F(z) = \begin{cases} f(z)/z & (z \neq 0), \\ 1 & (z = 0) \end{cases}$$

we get, from (10),

If we consider a family of schlicht