KŌDAI MATH. SEM. REP.
Nos. 5-6, Dec., 1949.

> FABER'S POLYNOMIALS.

By Shohei Nagura.
(Communicated by Y. Komatu.)

§1. Fundamental Identities.

The following method in $\S 1$ can be proceded verbatin for more general and even for multiply-connected domains, but in this Note we suppose the boundary of domain is the unit circle in order to apply our results for the coefficient problem.

Let $g(z)$ be a meromorphic, schlicht and non-vanishing function in the exterior of the unit circle $|z|>1$, and whose Laurent expansion about the point at infinity is of the form
(1) $\quad g(z)=z+\sum_{\nu=0}^{\infty} \frac{c_{\nu}}{z^{\nu}}$.

Then $f(z) \equiv 1 / g(1 / z)$ is regular and schlicht in the unit circle $|z|<1$ and, about the origin, it can be expanded in the form

$$
\begin{equation*}
f(z)=z+\sum_{\nu=2}^{\infty} a_{\nu} z^{\nu} \tag{2}
\end{equation*}
$$

Let $P_{n}(z)(n=1,2$,) be polynomial of z of degree n, which satisfies the condition

$$
\begin{equation*}
P_{n}(g(z))=z^{n}+\sum_{\nu=1}^{\infty} \frac{\alpha_{\nu}^{(n)}}{z^{\nu}} . \tag{3}
\end{equation*}
$$

Then, $P_{n}(z)$ is called the "Faber's polynomial" of degree n with respect to $g(z)$. ${ }^{(1)}$ By means of the Cauchy's integral formula, we have

$$
\begin{equation*}
P_{n}(w)=\frac{1}{2 \pi i} \int_{|\zeta|=r} \frac{P_{n}(\zeta)}{\zeta-w} d \zeta \tag{4}
\end{equation*}
$$

where w is an arbitrary point in the circle $|\zeta|<I$. Making the change of variable $\zeta=g(z)$, we get, for sufficiently large T 。

$$
\text { (5) } \quad P_{n}(w)=\frac{1}{2 \pi i} \int_{|z|=r} P_{n}(g(z)) d l_{g}(g(z)-w)
$$

On the other hand, we can easily prove

$$
\begin{align*}
0 & =\frac{1}{2 \pi i} \int_{|z|=x} \frac{P_{n}(g(z))}{z} d z \\
& =\frac{1}{2 \pi i} \int_{|z|=r} P_{n}(g(z)) d \lg z, \tag{6}
\end{align*}
$$

by virtue of (3). Hence, substracting (6) from (5), we have
(7) $P_{n}(w)=\frac{1}{2 \pi i} \int_{|z|=r} P_{n}(g(z)) d \lg \frac{g(z)-w}{z}$

Now, putting
(8) $\lg \frac{g(z)-w}{z}=-\sum_{\nu=1}^{\infty} \frac{Q_{\nu}(w)}{\nu} \frac{1}{z^{\nu}}$
and substituting (8) into (7), we obtain

$$
\begin{equation*}
P_{n}(w)=Q_{n}(w) . \tag{9}
\end{equation*}
$$

Since (9) holds for infinitely many values of w if we take a sufficiently large r, also does (9) hold good identically. After all, we have the following fundamental relation: ${ }^{(2)}$

$$
\begin{equation*}
\lg \frac{g(z)-w}{z}=-\sum_{\nu=1}^{\infty} \frac{P_{\nu}(w)}{v} \frac{1}{z^{v}} \tag{10}
\end{equation*}
$$

for an arbitrary w, the logarithm always denoting the branch which vanishes for $w=0$ and $Z=\infty$.

Putting $\zeta=1 / z, \quad g(z)=1 / f(\zeta)$, and comparing the coefficients of botil sides of (10), we have

$$
\begin{gather*}
P_{n}(z)=n \sum_{\mu=1}^{n}\left(\sum_{n_{1}+\cdots+n_{\mu}=n} a_{n_{1}} \cdot \cdots a_{n_{\mu}}\right) \frac{z^{\mu}}{\mu} \tag{11}\\
+P_{n}(0)
\end{gather*}
$$

and in particular $\quad P_{n}(0)=n a_{n}$. Differentiating (10) with respect to z and making use of the same reason as above, we obtain

$$
P_{1}(z)=z-c_{0}
$$

$$
\begin{gathered}
P_{n+1}^{(2)}(z)+\left(c_{0}-z\right) P_{n}(z)+\sum_{\mu=1}^{n-1} c_{\mu} P_{n-\mu}(z)+(n+1) c_{n}=0 \\
(n=2,3,)
\end{gathered}
$$

§2. Some Applications to the Distortion Theorems.

Putting

$$
F(z)= \begin{cases}f(z) / z & (z \neq 0) \tag{13}\\ 1 & (z=0)\end{cases}
$$

we get, from (10),

$$
\begin{equation*}
\operatorname{Ig} F(z)=\sum_{\nu=1}^{\infty} \frac{P_{\nu}(0)}{\nu} z^{\nu} \tag{14}
\end{equation*}
$$

If we consider a family of schlicht

