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This note contains two different
problems. In §1,§ 2 we, shall give some
results similar as the one which were
obtained by Kac and Stθinhaus.O The de- '
finitions used here of asymptotic dis- - so that it suffices zo show that
tributtons are different from them, and ^
the hypothesis in the theorem are less
restrictive* In § 3 , we are concerned
with some limit theorems.
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to a distribution function g>O forτ^^ ,
we say that xtt) has an asymptotic dis«>
trlbutlon- function 5P This definition
is due to Harteman and Wlntner
Now we shall prove the theorem*

Theorem JU .If x(t) has an asympto»
tic distribution function, then for any
continuous function ^-α) in RP-
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To prove the theorem we need a fol-
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Proof of Theorem. For simplicity,
we restrict ourselves for the case where
xct> is a real function* We write

Therefore we have

d<f(x)\<Lm

J.
But the integration by parts shows that

By ϊwexmna 1, i t i s suff ic ient to prove
that
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