GEOMETRIC PROBABILITIES CONCERNING LARGE RANDOM TRIANGLES IN THE HYPERBOLIC PLANE

Yukinao Isokawa

Abstract

Concernıng a random triangle on a disk D_{R} of radius R in the hyperbolic plane, the following four geometric probabilities are studied: (i) the probability $p_{a}(R)$ that a random triangle is acute; (ii) the probability $p_{o}(R)$ that a random triangle has the orthocenter; (iii) the probability $p_{e}(R)$ that a random triangle has at least one of the three excenters; and (iv) the probability $p_{c}(R)$ that a random triangle has the circumcenter. It is shown that, as R tends to the infinity, both the probability $p_{a}(R)$ and $p_{o}(R)$ tend to one, whereas the probability $p_{e}(R)$ tends to zero. Moreover it is shown that the probability $p_{c}(R)$ tends to a limit p_{c}, which can be expressed as a certan expectation concerning a random triangle in the Euclidean plane. To evaluate this expectation numerically, we obtain 0.45962039 as an estımate for p_{c}.

1. Introduction

The first problem concerning random triangles in the Euclidean plane is perhaps the problem "what is the probability that a random triangle is acute?". This problem was proposed by [11], and as an answer to the problem, it gave the probability $4 / \pi^{2}-1 / 8$, assuming that three vertices of a random triangle are distributed independently and uniformly in the unit disk. Since that time various studies have been made on this problem. In [5] five different solutions to the problem are given. Whereas differences of these solutions reflect those of meanings on random triangles, they lead to the common probability $1 / 4$. In [10] one more solution to the problem is given, where three vertices are assumed to be distributed according as a Gaussian distribution. The answer is again 1/4. These results are extended in [6] and [3] to the corresponding problem for random triangles in higher-dimensional Euclidean spaces.

Another problem oncerning random triangles, which has been extensively studied, is to find the distribution of the area of a random triangle whose three vertices are uniformly distributed in a given domain of Euclidean spaces. In [1], for the case that a domain is a triangle in the Euclidean plane, explicit expressions for all the moments of the area are given. In [2] these results are

[^0]
[^0]: Recerved October 10, 1998; revised July 22, 1999.

