UNIQUENESS OF ENTIRE FUNCTIONS THAT SHARE SOME SMALL FUNCTIONS

Gangdi Qiu

Abstract

In this paper we obtain a unicity theorem of an entire function and its derivative that share two small functions IM. So we generalize and improve some results given by Rubel-Yang, Mues-Sternmetz and J. H. Zheng etc.

1. Introduction and main results

In this paper, we use the same signs as given in Nevanlinna theory of meromorphic functions (see [1]). By $S(r, f)$ we denote any quantity satisfying $S(r, f)=o\{T(r, f)\}$ as $r \rightarrow \infty$, possibly outside a set of r with finite linear measure. Let f and g be two meromorphic functions. Then the meromorphic function α is said a small function of f if and only if $T(r, \alpha)=S(r, f)$. We say that f and g share a value $a \mathrm{IM}(\mathrm{CM})$ if $f-a$ and $g-a$ have the same zeros ignoring multiplicities (with the same multiplicity). When a is a small function of f and g, a is said a common small function of f and $g \mathrm{IM}(\mathrm{CM})$. In addition, we introduce the following denotations:
$S(m, n)(b)=\left\{z \mid z\right.$ is a common zero of $f-b$ and $f^{\prime}-b$ with multiplicities m and n respectively $\}$. $\bar{N}(m, n)(r, 1 /(f-b))$ denotes the counting function of f with respect to the set $S(m, n)(b)$.

On the problems of uniqueness of an entire function and its derivative that share some values, Rubel-Yang (see [2]) proved that if the entire function f and f^{\prime} share two distinct finite values CM then $f \equiv f^{\prime}$. Mues-Steinmetz (see [3]) improved this result to the case when f and f^{\prime} share two values IM. In 1992, J. H. Zheng and S. P. Wang (see [4]) generalized this result to the f and f^{\prime} which share two small functions CM. In this paper, we generalize and improve above results to obtain the following result:

Theorem 1. Let f be a nonconstant entire function, a and b two distinct small functions of f with $a \not \equiv \infty$ and $b \not \equiv \infty$. If f and f^{\prime} share a and $b I M$, then $f \equiv f^{\prime}$.

[^0]
[^0]: Supported by Fujian Provincal Science Foundation.
 Keywords: Entire function, Meromorphic function, Small function, Uniqueness.
 Receıved August 24, 1998; revised July 5, 1999

