M. MUKAI KODAI MATH. J. 20 (1997), 252–268

THE DEFORMATION OF HARMONIC MAPS GIVEN BY THE CLIFFORD TORI

Mariko Mukai

Introduction

The purpose of this paper is to provide some new results on deformations for harmonic maps. Let ϕ be a harmonic map of a compact Riemannian manifold M into a Riemannian manifold N. A one-parameter family $\phi(t)$ of harmonic maps such that $\phi(0)=\phi$ is called a *harmonic deformation of* ϕ . Then each $\phi(t)$ satisfies the harmonic map equations:

$$\tau(\phi(t)) \equiv 0,$$

where $\tau(\phi)$ denotes the tension field of ϕ . By taking a derivative of the equation (0.1) at t=0, we have the equation

(0.2)
$$\frac{d}{dt}\tau(\phi(t))\Big|_{t=0} \equiv \mathcal{T}_{\phi}(\dot{\phi}) = 0, \quad \dot{\phi} \in C^{\infty}(\phi^{-1}TN).$$

Here \mathcal{T}_{ϕ} denotes the Jacobi operator of the energy functional. If a section $v \in C^{\infty}(\phi^{-1}TN)$ of $\phi^{-1}TN$ satisfies the equation (0.2), then it is called an *infinitesimal* harmonic deformation (or a harmonic i-deformation) of ϕ . We denote by $\text{HID}(\phi)$ the vector space of all harmonic i-deformations of ϕ . The space $\text{HID}(\phi)$ just coincides with the vector space $\text{Ker}\mathcal{T}_{\phi}$ of all Jacobi fields of ϕ . If $v \in \text{HID}(\phi)$ generates harmonic deformations, then v is said to be *integrable*. Let Harm(M, N) denote the space of all harmonic maps of M into N. From the point of view of the deformation theory of harmonic maps, the following are fundamental problems;

(1) to ask whether or not all harmonic *i*-deformations of ϕ are integrable,

(2) to make its cause clear if an harmonic i-deformation which is not integrable appears,

(3) to investigate the structure of a neighborhood in Harm(M, N) around ϕ ,

(4) to determine the connected component in Harm(M, N) containing ϕ and to examine its compactness, if it is noncompact, to construct its natural compactification.

Because of the finiteness of the dimension of $\text{Ker} \mathcal{I}_{\phi}$, we know that $\text{Harm}(M, \frac{1}{2} \text{Received April 7, 1997}; revised June 23, 1997.$