M. MUKAI
KODAI MATH. J.
20 (1997), 252—268

THE DEFORMATION OF HARMONIC MAPS
GIVEN BY THE CLIFFORD TORI
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Introduction

The purpose of this paper is to provide some new results on deformations
for harmonic maps. Let ¢ be a harmonic map of a compact Riemannian mani-
fold M into a Riemannian manifold N. A one-parameter family ¢(t) of harmonic
maps such that ¢(0)=¢ is called a harmonic deformation of ¢. Then each ¢()
satisfies the harmonic map equations:

0.1) (¢@)=0,

where 7(¢) denotes the tension field of ¢. By taking a derivative of the equa-
tion (0.1) at t=0, we have the equation

0.2) -57 2((t)) ,=Fg¢(¢):°’ deC=(¢"'TN).

Here g4 denotes the Jacobi operator of the energy functional. If a section ve
C=(¢7*TN) of ¢ 'TN satisfies the equation (0.2), then it is called an infinitesimal
harmonic deformation (or a harmonic i-deformation) of ¢. We denote by HID(¢)
the vector space of all harmonic i-deformations of ¢. The space HID(¢) just
coincides with the vector space Kerdy of all Jacobi fields of ¢. If veHID(¢)
generates harmonic deformations, then v is said to be integrable. Let Harm(M,
N) denote the space of all harmonic maps of M into N. From the point of view
of the deformation theory of harmonic maps, the following are fundamental
problems ;

(1) to ask whether or not all harmonic /-deformations of ¢ are integrable,

(2) to make its cause clear if an harmonic ;-deformation which is not in-
tegrable appears,

(3) to investigate the structure of a neighborhood in Harm(M, N) around ¢,

(4) to determine the connected component in Harm(M, N) containing ¢ and
to examine its compactness, if it is noncompact, to construct its natural com-
pactification.

Because of the finiteness of the dimension of Kerd s, we know that Harm(M,
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