ON THE SCHWARZIAN DIFFERENTIAL
 EQUATION $\{w, z\}=R(z, w)$

Katsuya Ishizaki

Abstract

It is showed in this note that if the Schwarzian differential equation (*) $\{w, z\}=R(z, w)=P(z, w) / Q(z, w)$, where $P(z, w)$ and $Q(z, w)$ are polynomials in w with meromorphic coefficients, possesses an admissible solution $w(z)$, then $w(z)$ satisfies a first order equation of the form (**) $\left(w^{\prime}\right)^{2}+B(z, w) w^{\prime}+A(z, w)$ $=0$, where $B(z, w)$ and $A(z, w)$, are polynomials in w having small coefficients with respect to $w(z)$, or by a suitable Möbius transformation (*) reduces into $\{w, z\}=P(z, w) /(w+b(z))^{2}$ or $\{w, z\}=c(z)$. Furthermore, we study the equation (**).

1. Introduction

We are concerned with the Schwarzian differential equation

$$
\begin{equation*}
\{w, z\}=\left(\frac{w^{\prime \prime}}{w^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{w^{\prime \prime}}{w^{\prime}}\right)^{2}=R(z, w)=\frac{P(z, w)}{Q(z, w)} \tag{1.1}
\end{equation*}
$$

where $P(z, w)$ and $Q(z, w)$ are polynomials in w having meromorphic coefficients with $\operatorname{deg}_{w} P(z, w)=p$ and $\operatorname{deg}_{w} Q(z, w)=q$, respectively. Moreover, we assume that they are relatively prime.

We studied the Schwarzian equation $\{w, z\}^{m}=R(z, w)$ in [2, Theorems 1-3]. The Malmquist-Yoshida type theorem to the Schwarzian equation was obtained. Furthermore, we determined the form of the Schwarzian equation that possesses an admissible solution especially when $R(z, w)$ is independent of z. However, it might be difficult to get the similar assertion in the case when $R(z, w)$ is not independent of z. We treat the Schwarzian equation only when $m=1$, say, the equation (1.1). We also consider the first order equation

$$
\begin{equation*}
\left(w^{\prime}\right)^{2}+2 B(z, w) w^{\prime}+A(z, w)=0, \tag{1.2}
\end{equation*}
$$

where $B(z, w)$ and $A(z, w)$ are polynomials in w having meromorphic coefficients. In this note, we use standard notations in the Nevanlinna theory (see e.g., [1], [5], [6]). Let $f(z)$ be a meromorphic function. Here, the word "meromorphic" means meromorphic in $|z|<\infty$. As usual, $m(r, f), N(r, f)$, and $T(r, f)$ denote

Received May 19, 1993 ; revised February 21, 1997.

