R. WANGKODAI MATH. J.19 (1996), 259-281

LINEAR ISOMETRIC OPERATORS ON THE $C_0^{(n)}(X)$ TYPE SPACES

RISHENG WANG

Abstract

In this paper, we try to investigate the representations of isometries, isometry groups and the space classifications of the $C_0^{(n)}(X)$ type spaces $(X \subset \mathbb{R}^m, m, n \ge 1)$.

§0. Introduction

Let Z_+ be the set of non-negative integers. We make the following notations:

$$\mathbf{x} = (x_1, x_2, \dots, x_m) \in \mathbf{R}^m \quad \mathbf{r} = (r_1, r_2, \dots, r_m) \in \mathbf{Z}_+^m$$

$$\mathbf{r} = r_1! r_2! \dots r_m! \qquad |\mathbf{r}| = r_1 + r_2 + \dots + r_m$$

$$f^{(r)}(\mathbf{x}) = \frac{\partial^{r_1 + r_2 + \dots + r_m} f(\mathbf{x})}{\partial x_1^{r_1} \partial x_2^{r_2} \dots \partial x_m^{r_m}}.$$

If \mathcal{Q} is a locally compact Hausdorff space, $C_0(\mathcal{Q})$ denotes the Banach space consisting of continuous function f on \mathcal{Q} vanishing at infinity (i.e., $\{\omega \in \mathcal{Q} : |f(\omega)| \ge \epsilon\}$ is compact for all $\epsilon > 0$), with the norm $||f|| = \sup\{|f(\omega)| : \omega \in \mathcal{Q}\}$. For any integers $m, n \ge 1$, set $\Gamma = \{\mathbf{r} = (r_1, \dots, r_m) \in \mathbb{Z}_+^m : r_1 + \dots + r_m \le n\}$. A subset X of \mathbb{R}^m is called to be NIP: if for any line L parallel to one of the axes of \mathbb{R}^m the set $L \cap X$ contains no isolated points. If X is a locally compact and NIP subset of \mathbb{R}^m , we use $C_0^{(n)}(X)$ to denote the normed space consisting of all function f on X which satisfies: $f^{(r)} \in C_0(X)$ for all $\mathbf{r} \in \Gamma$, with the norm ||f|| $= \sup_{\mathbf{x} \in X} \sum_{\mathbf{r} \in \Gamma} |f^{(r)}(\mathbf{x})|/\mathbf{r}|$. We set $C_0^{(0)}(X) = C_0(X)$ and use $S_{n, X}$ to denote the unit sphere of $C_0^{(n)}(X)$.

For the case n=m=1 and X, $Y \subseteq \mathbb{R}^{1}$, the representations of surjective linear isometries between $C_{0}^{(1)}(X)$ and $C_{0}^{(1)}(Y)$ had been studied by Cambern and Pathak [1] (complex case only), for m=1, $n\geq 1$ and X=Y=[0, 1], by Pathak [2] (complex case only), and for m=1, $n\geq 1$ and X, $Y\subseteq \mathbb{R}^{1}$ with some conditions by

¹⁹⁹¹ Mathematics Subject Classification. Primary: 46B04; Secondly: 46E15.

Key words and phrases. isometry, representation of isometry, isometry group.

[†] The author is supported in part by Nihon Tea-Pack Fellowship.

Received April 27, 1995; revised December 11, 1995.