H. YAMAGUCHI KODAI MATH. J. 19 (1996), 117–136

ORTHOGONAL DECOMPOSITION RELATED TO MAGNETIC FIELD, AND GRUNSKY INEQUALITY

HIROSHI YAMAGUCHI

1. Introduction

Let D be a bounded domain in \mathbb{R}^3 with C^{ω} smooth boundary surfaces Σ . Let $\sigma = adx + bdy + cdz$ be a C^{∞} closed 1-form on \overline{D} $(=D \cup \Sigma)$. By putting $\tilde{\sigma} = \sigma$ in \overline{D} and =0 outside D, we consider the usual Weyl's orthogonal decomposition: $\tilde{\sigma} = *\omega + dF$ in \mathbb{R}^3 , where ω is a L^2 closed 2-form in \mathbb{R}^3 and $dF \in Cl[dC_0^{\infty}(\mathbb{R}^3)]$.

In §4 we shall show that ω is a harmonic 2-form in $\mathbb{R}^3 \setminus \Sigma$ of the form $\omega = dp$ and that p and F are written into the following integral formulas:

$$p(x) = \left(\frac{1}{4\pi} \int_{\Sigma} \frac{(a, b, c) \times \boldsymbol{n}_{y}}{\|x - y\|} dS_{y}\right) \cdot dx \qquad \text{for } x \in \boldsymbol{R}^{3},$$

$$F(x) = \frac{1}{4\pi} \int_{\Sigma} \frac{(a, b, c) \cdot \boldsymbol{n}_{y}}{\|x - y\|} dS_{y} - \frac{1}{4\pi} \int_{D} \frac{\operatorname{div}(a, b, c)}{\|x - y\|} dv_{y} \quad \text{for } x \in \boldsymbol{R}^{3},$$

where n_y is the unit outer normal vector of Σ at y, dx = (dx, dy, dz), and \cdot means the formal inner product.

In §2 we briefly recall the definition of surface current densities on Σ and their properties studied in [6]. In §3 we shall prove an approximation lemma concerning improper integrals. This lemma is not only useful to prove the above integral formulas but also to show the fact that ω is related to the magnetic field. Precisely, if we write $\omega = \alpha dy \wedge dz + \beta dz \wedge dx + \gamma dx \wedge dy$ and define $B = (\alpha, \beta, \gamma)$ in $\mathbb{R}^{\mathfrak{s}} \setminus \Sigma$, then B is a magnetic field induced by a surface current density JdS_x on Σ such that B is the strong limit of a sequence of usual magnetic fields $\{B_n\}_n$ in $\mathbb{R}^{\mathfrak{s}}: \lim_{n\to\infty} \int_{\mathbb{R}^{\mathfrak{s}}} ||B_n(x) - B(x)||^2 dv_x = 0$. In §5 we shall show that this fact implies the existence of equilibrium current densities $\mathcal{J}dS_x$ on Σ . The notion of equilibrium current densities were introduced in [6] motivated by the electric solenoid.

In §6 the integral formulas in \mathbb{R}^3 stated above is extended into those in the complex z-plane. We then obtain a new proof of Grunsky inequality (cf. [4]), which implies a necessary and sufficient condition for the case when the inequality is reduced to equality. It gives us many examples of such cases.

Received October 25, 1994; revised May 8, 1995.