HARMONIC DIMENSION OF COVERING SURFACES, II

Dedicated to Professor Fumi-Yuki Maeda on his sixtieth birthday

Hiroaki Masaoka

Introduction

Let F be an open Riemann surface of null boundary which has a single ideal boundary component in the sense of Kerékjártó-Stoïlow (cf. [3, p. 98]). A relatively noncompact subregion Ω of F is said to be an end of F if the relative boundary $\partial \Omega$ consists of finitely many analytic Jordan curves (cf. Heins [4]). We denote by $\mathscr{P}(\Omega)$ the class of all nonnegative harmonic functions on Ω with vanishing values on $\partial \Omega$. The harmonic dimension of Ω, $\operatorname{dim} \mathscr{Q}(\Omega)$ in notation, is defined as the minimum number of elements of $\mathscr{P}(\Omega)$ generating $\mathscr{P}(\Omega)$ provided that such a finite set exists, otherwise as ∞. It is well-known that $\operatorname{dim} \mathscr{P}(\Omega)$ dose not depend on a choice of end of $F: \operatorname{dim} \mathscr{P}(\Omega)=\operatorname{dim} \mathscr{P}\left(\Omega^{\prime}\right)$ for any pair (Ω, Ω^{\prime}) of ends of F (cf. [4]). In terms of the Martin compactification $\operatorname{dim} \mathscr{P}(\Omega)$ coincides with the number of minimal points over the ideal boundary (cf. Constantinesc and Cornea [3]).

In this note we especially consider ends W which are subregion of p-sheeted unlimited covering surfaces of $\{0<|z| \leqq \infty\}$. For these W it is known that $1 \leqq \operatorname{dim} \mathscr{P}(W) \leqq p$ (cf. [4]). Consider two positive sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfying $b_{n+1}<a_{n}<b_{n}<1$ and $\lim _{n \rightarrow \infty} a_{n}=0$. Set $G=\{0<|z|<1\}-I$ where $I=\cup_{n=1}^{\infty} I_{n}$ and $I_{n}=\left[a_{n}, b_{n}\right]$. We take $p(>1)$ copies G_{1}, \cdots, G_{p} of G. Joining the upper edge of I_{n} on G_{\jmath} and the lower edge of I_{n} on $G_{\jmath+1}(\jmath \bmod p)$ for every n, we obtain a p-sheeted covering surface $W=W_{p}^{I}$ of $\{0<|z|<1\}$ which is naturally considered as an end of a p-sheeted covering surface of $\{0<|z| \leqq \infty\}$. In the previous paper [6] we proved the following.

Theorem A ([6, Theorem]). Suppose that $p=2^{m}(m \in \boldsymbol{N})$. Then
(i) $\operatorname{dim} \mathscr{P}(W)=p$ if and only if I is thin at $z=0$;
(ii) $\operatorname{dim} \mathscr{P}(W)=1$ if and only if I is not thin at $z=0$.

The purpose of this note is to show that, in a bit more general setting for l, Theorem A is valid for every $p(>1)$ (cf. §1). Consequently we have the following.

Received March 2, 1994 ; revised October 3, 1994

