# NOTE ON ESTIMATION OF THE NUMBER OF THE CRITICAL VALUES AT INFINITY 

By Le Van Thanh and Mutsuo Oka

1. Let $f(x, y)$ be a polynomial of degree $d$ and we consider the polynomial function $f: \mathbf{C}^{2} \rightarrow \mathbf{C}$. Let $\Sigma(f)$ be the critical values. The restriction

$$
f: \mathbf{C}^{2}-f^{-1}(\Sigma) \rightarrow \mathbf{C}-\Sigma
$$

is not necessarily a locally trivial fibration. We say that $\tau \in \mathbf{C}$ is a regular value at infinaty of the function $f: \mathbf{C}^{2} \rightarrow \mathbf{C}$ if there exist positive numbers $R$ and $\varepsilon$ so that the restriction of $f, f: f^{-1}\left(D_{\varepsilon}(\tau)\right)-B_{R}^{4} \rightarrow D_{\varepsilon}(\tau)$, is a trivial fibration over the disc $D_{\varepsilon}(\tau)$ where $D_{\varepsilon}(\tau)=\{\eta \in \mathbf{C} ;|\eta-\tau| \leq \varepsilon\}$ and $B_{R}^{4}=\left\{(x, y) ;|x|^{2}+|y|^{2} \leq R\right\}$. Otherwise $\tau$ is a called a critical value at infinity. We denote the set of the critical values at infinity by $\Sigma_{\infty}$. It is known that $\Sigma_{\infty}$ is finite ([23], [2]). The purpose of this note is to give an estimation on the number of critical values at infinity. The detail will be published elsewhere ([12]).

We first consider the canonical projective compactification $\mathbf{C}^{2} \subset \mathbf{P}^{2}$. We denote the homogeneous coordinates of $\mathbf{P}^{2}$ by $X, Y, Z$ so that $x=X / Z$ and $y=Y / Z$ Let $L_{\infty}$ be the line at infinity: $L_{\infty}=\{Z=0\}$. Write

$$
f(x, y)=f_{0}+f_{1}(x, y)+\cdots+f_{d}(x, y)
$$

where $f_{i}(x, y)$ is a homogeneous polynomial of degree $i$ for $i=0, \ldots, d$. We can write

$$
\begin{equation*}
f_{d}(x, y)=c x^{\nu_{0}} y^{\nu_{k+1}} \prod_{j=1}^{k}\left(y-\lambda_{j} x\right)^{\nu_{j}} \tag{1.1}
\end{equation*}
$$

where $c \in \mathbf{C}^{*}$ and $\lambda_{1}, \ldots, \lambda_{k}$ are non-zero distinct numbers and we assume that $\nu_{i}>0$ for $1 \leq i \leq k$ and $\nu_{0}, \nu_{k+1} \geq 0$. Note that we have the equality

$$
\begin{equation*}
\nu_{0}+\cdots+\nu_{k+1}=d \tag{1.2}
\end{equation*}
$$

Let $C_{\tau}$ be the projective curve which is the closure of the fiber $f^{-1}(\tau)$. Then $C_{\tau}$ is defined by $C_{\tau}=\left\{(X ; Y ; Z) \in \mathbf{P}^{2} ; F(X, Y, Z)-\tau Z^{d}=0\right\}$ where $F(X, Y, Z)$ is the homogeneous polynomial defined by

$$
\begin{equation*}
F(X, Y, Z)=f(X / Z, Y / Z) Z^{d}=f_{0} Z^{d}+f_{1}(X, Y) Z^{d-1}+\cdots+f_{d}(X, Y) \tag{1.3}
\end{equation*}
$$

The intersection of $C_{\tau}$ and the line at infinity, $C_{\tau} \cap L_{\infty}$, is independent of $\tau \in \mathbf{C}^{2}$ and it is the base point locus of the family $\left\{C_{\tau} ; \tau \in \mathbf{C}\right\}$. Obviously we have $C_{\tau} \cap L_{\infty}=$ $\left\{Z=f_{d}(X, Y)=0\right\}$. For brevity, let $A_{2}=\left(\alpha_{i} ; \beta_{i} ; 0\right) \in \mathbf{P}^{2}$ for $i=0, . \quad, k+1$ where $A_{0}=(0 ; 1 ; 0), A_{k+1}=(1 ; 0 ; 0)$ and $\beta_{i} / \alpha_{i}=\lambda_{i}$ for $1 \leq i \leq k$. Then under the assumption (1.1), $C_{0} \cap L_{\infty}=\left\{A_{2} ; \nu_{i}>0\right\}$. Note that $A_{\imath} \in C_{0} \cap L_{\infty}$ for $i=1, \ldots, k$. We consider the family of germs of a curve at $A_{j}:\left\{\left(C_{\tau}, A_{j}\right) ; \tau \in \mathbf{C}\right\}$. Then it is known that $\tau$ is a

[^0]
[^0]:    Received June 30, 1993.

