NOTE ON ESTIMATION OF THE NUMBER OF THE CRITICAL VALUES AT INFINITY

BY LE VAN THANH AND MUTSUO OKA

1. Let f(x, y) be a polynomial of degree d and we consider the polynomial function $f: \mathbb{C}^2 \to \mathbb{C}$. Let $\Sigma(f)$ be the critical values. The restriction

$$f: \mathbf{C}^2 - f^{-1}(\Sigma) \to \mathbf{C} - \Sigma$$

is not necessarily a locally trivial fibration. We say that $\tau \in \mathbf{C}$ is a regular value at infinity of the function $f: \mathbf{C}^2 \to \mathbf{C}$ if there exist positive numbers R and ε so that the restriction of $f, f: f^{-1}(D_{\varepsilon}(\tau)) - B_R^4 \to D_{\varepsilon}(\tau)$, is a trivial fibration over the disc $D_{\varepsilon}(\tau)$ where $D_{\varepsilon}(\tau) = \{\eta \in \mathbf{C}; |\eta - \tau| \leq \varepsilon\}$ and $B_R^4 = \{(x, y); |x|^2 + |y|^2 \leq R\}$. Otherwise τ is a called a critical value at infinity. We denote the set of the critical values at infinity by Σ_{∞} . It is known that Σ_{∞} is finite ([23], [2]). The purpose of this note is to give an estimation on the number of critical values at infinity. The detail will be published elsewhere ([12]).

We first consider the canonical projective compactification $\mathbf{C}^2 \subset \mathbf{P}^2$. We denote the homogeneous coordinates of \mathbf{P}^2 by X, Y, Z so that x = X/Z and y = Y/Z Let L_{∞} be the line at infinity: $L_{\infty} = \{Z = 0\}$. Write

$$f(x,y) = f_0 + f_1(x,y) + \cdots + f_d(x,y)$$

where $f_i(x, y)$ is a homogeneous polynomial of degree *i* for i = 0, ..., d. We can write

(1.1)
$$f_d(x,y) = c x^{\nu_0} y^{\nu_{k+1}} \prod_{j=1}^k (y - \lambda_j x)^{\nu_j}$$

where $c \in \mathbf{C}^*$ and $\lambda_1, \ldots, \lambda_k$ are non-zero distinct numbers and we assume that $\nu_i > 0$ for $1 \le i \le k$ and $\nu_0, \nu_{k+1} \ge 0$. Note that we have the equality

(1.2)
$$\nu_0 + \dots + \nu_{k+1} = d$$

Let C_{τ} be the projective curve which is the closure of the fiber $f^{-1}(\tau)$. Then C_{τ} is defined by $C_{\tau} = \{(X;Y;Z) \in \mathbf{P}^2; F(X,Y,Z) - \tau Z^d = 0\}$ where F(X,Y,Z) is the homogeneous polynomial defined by

(1.3)
$$F(X,Y,Z) = f(X/Z,Y/Z)Z^{d} = f_0 Z^{d} + f_1(X,Y)Z^{d-1} + \dots + f_d(X,Y)$$

The intersection of C_{τ} and the line at infinity, $C_{\tau} \cap L_{\infty}$, is independent of $\tau \in \mathbb{C}^2$ and it is the base point locus of the family $\{C_{\tau}; \tau \in \mathbb{C}\}$. Obviously we have $C_{\tau} \cap L_{\infty} = \{Z = f_d(X, Y) = 0\}$. For brevity, let $A_i = (\alpha_i; \beta_i; 0) \in \mathbb{P}^2$ for $i = 0, \dots, k+1$ where $A_0 = (0; 1; 0), A_{k+1} = (1; 0; 0)$ and $\beta_i / \alpha_i = \lambda_i$ for $1 \leq i \leq k$. Then under the assumption $(1.1), C_0 \cap L_{\infty} = \{A_i; \nu_i > 0\}$. Note that $A_i \in C_0 \cap L_{\infty}$ for $i = 1, \dots, k$. We consider the family of germs of a curve at $A_i: \{(C_{\tau}, A_i); \tau \in \mathbb{C}\}$. Then it is known that τ is a

Received June 30, 1993.