AN ALGEBRAIC APPROACH TO THE REGULARITY INDEX OF FAT POINTS IN P^n

By NGÔ VIÊT TRUNG

Abstract

The aim of this note is to present an efficient algebraic method for the estimation of the (Castelnuovo) regularity index of fat points in \mathbf{P}^n and to discuss recent results on this topic.

Introduction

Given a point P in the projective space $\mathbf{P}^n := \mathbf{P}^n(k)$, k an algebraically closed field, we say that a form (or a hypersurface) f of the polynomial ring $R := k[X_0, \ldots, X_n]$ has multiplicity m at P if all derivatives of f of order $\leq m$ vanish at P.

Let $X = \{P_1, \ldots, P_s\}$ be a set of s points in \mathbf{P}^n and $m_1 \geq \ldots \geq m_s$ a sequence of positive integers. We denote by $m_1P_1 + \cdots m_sP_s$ the zero-scheme defined by the ideal of all forms of R vanishing at P_i with multiplicity $\geq m_i$, $i = 1, \ldots, s$, and call

$$Z := m_1 P_1 + \cdots m_s P_s$$

a set of fat points in \mathbf{P}^n . There are many reasons for our interest in this notion. For instance, Z is simply the zero-scheme of hypersurfaces passing through X if $m_1 = \ldots = m_s = 1$, and of hypersurfaces containing P_1, \ldots, P_s as singular points if $m_1 = \ldots = m_s = 2$.

Let \mathcal{I} denote the ideal sheaf of Z. Then $H^0(\mathbf{P}^n, \mathcal{I}(t))$ corresponds to the linear system of hypersurfaces of degree t passing through P_1, \ldots, P_s with multiplicity $\geq m_i$ at $P_i, i = 1, \ldots, s$. If $H^1(\mathbf{P}^n, \mathcal{I}(t)) = 0$, this linear system is called regular. The least integer t for which $H^1(\mathbf{P}^n, \mathcal{I}(t)) = 0$ is called the *regularity index* of Z, and we will denote it by r(Z). There has been much interest to estimate r(Z) in terms of m_1, \ldots, m_s .

For arbitrary fat points in \mathbf{P}^2 one can find in W. Fulton [6] the following upper bound:

$$r(Z) \leq \sum_{i=1}^{s} m_i - 1.$$

This bound was extended to arbitrary fat points in \mathbf{P}^n by E. Davis and A. Geramita in [4], where they also showed that $r(Z) = \sum_{i=1}^{s} m_i - 1$ if and only if P_1, \ldots, P_s lie on a line of \mathbf{P}^n . For almost all sets X of s points in \mathbf{P}^2 , B. Segre [16] found the upper bound:

$$r(Z) \leq \max\{m_1 + m_2 - 1, [\sum_{i=1}^{n} m_i/2]\}$$

Received May 19, 1993.