H. UEDA KODAI MATH. J. 17 (1994), 329-340

SOME ESTIMATES FOR MEROMORPHIC FUNCTIONS SHARING FOUR VALUES

Dedicated to Professor Nobuyuki Suita on the occasion of his 60th birthday

By Hideharu Ueda

1. Introduction

In this paper the term "meromorphic function" will mean a meromorphic function in C. We will use the standard notations of Nevanlinna theory: T(r, f), m(r, c, f), N(r, c, f), $\overline{N}(r, c, f)$, $N_k(r, c, f)$, $\overline{N}_k(r, c, f)$ ($c \in C \cup \{\infty\}$, $k=1, 2, \cdots$), and we assume that the reader is familiar with the basic results in Nevanlinna theory as found in [3]. Further, we will use the notations and terminology defined in the following (i)-(vi):

(i) Let f and g be distinct nonconstant meromorphic functions. For r>0, put $T(r)=\max\{T(r, f), T(r, g)\}$. We write $\sigma(r)=S(r)$ for every function $\sigma: (0, \infty) \rightarrow (-\infty, \infty)$ satisfying $\sigma(r)/T(r) \rightarrow 0$ for $r \rightarrow \infty$ possibly outside a set of finite Lebesgue measure.

(ii) For two nonconstant meromorphic functions f, g and $c \in \mathbb{C} \cup \{\infty\}$ we denote by $\bar{n}(r, c) = \bar{n}(r, c; f, g)$ (resp. $\bar{n}_1(r, c) = \bar{n}_1(r, c; f, g)$), $\bar{n}_3(r, c) = \bar{n}_3(r, c; f, g)$) the number of distinct roots of at least one of the equations f = c and g = c in $|z| \leq r$ (resp. the number of distinct common roots of f = c and g = c with the same multiplicities in $|z| \leq r$, the number of distinct c-points of f or g which are not common to f and g in $|z| \leq r$). We write

$$\overline{N}(r, c) = \overline{N}(r, c; f, g) = \int_0^r \{\overline{n}(t, c) - \overline{n}(0, c)\} / t \, dt + \overline{n}(0, c) \log r,$$

$$\overline{N}_j(r, c) = \overline{N}_j(r, c; f, g) = \int_0^r \{\overline{n}_j(t, c) - \overline{n}_j(0, c)\} / t \, dt + \overline{n}_j(0, c) \log r \ (j=1, 3)$$

and

$$\overline{N}_2(r, c) = \overline{N}(r, c) - \overline{N}_1(r, c)$$
.

Further, for a complex number $a(\neq 0, 1)$ we write

$$\overline{N}(r) = \overline{N}(r, 0) + \overline{N}(r, 1) + \overline{N}(r, \infty) + \overline{N}(r, a),$$

$$\overline{N}_{j}(r) = \overline{N}_{j}(r, 0) + \overline{N}_{j}(r, 1) + \overline{N}_{j}(r, \infty) + \overline{N}_{j}(r, a) \qquad (j=1, 2)$$

AMS classification 30D35

Received May 12, 1993.