DECOMPOSITION NUMBERS FOR SPIN CHARACTERS OF EXCEPTIONAL WEYL GROUPS OF TYPE E_{n}

By Muhammad Saleem

Introduction

It is well known that the groups, $W\left(E_{6}\right) \cong S_{4}(3) .2 \cong U_{4}(2) .2 ; W\left(E_{7}\right) \cong C_{2} \times$ $B_{3}(2) \cong C_{2} \times D_{7}(2)$, where C_{2} is the cyclic group of order 2 and $W\left(E_{8}\right) \cong 2 . O_{8}^{+}(2)$. $2 \cong 2 . D_{4}(2) .2$ (see, [CCN]),

In this paper, which is a continuation of [Sa], the decomposition matrices for the spin characters of the exceptional Weyl groups of type $E_{n}(n=6,7,8)$, for the prime numbers $p=5,7$ are determined. In all cases except $W\left(E_{8}\right)$ and $p=5$, the relevent prime number divides, the order of the group to the first power only.

First we use the central characters to split the ordinary characters into p blocks (For general information about p-blocks, see [CR]). Let B be a p-block of a group G and let $\Psi_{1}, \cdots, \Psi_{s}$ and $\phi_{1}, \cdots, \phi_{r}$, respectively, denote the ordinary and p-modular irreducible characters of G in B. The restriction of each Ψ_{\imath} to p-regular classes of G, denoted by $\bar{\Psi}_{2}$ is a p-modular character of G and $\bar{\Psi}_{\imath}=\sum_{j=1}^{r} d_{\imath j} \phi_{\jmath}(1 \leqq i \leqq s)$ where $d_{\imath \jmath}$'s are non-negative ingers, called the decomposition numbers of B for the prime p. The $(s \times r)$ matrix $D_{P}^{B}(G)=\left(d_{\imath j}\right)$ is called the decomposition matrix of B for the prime p. Furthermore, a principal character $\sum_{i=1}^{s} c_{i} \Psi_{\imath}$ will be identified with the column of integers $c=\left(c_{\imath}\right)$ and it may be indecomposable or sum of principal indecomposable characters in B.

One way to constructs $D_{P}^{B}(G)$ is to find the principal indecomposable characters in B. This method is described by James and Kerber [JK] and is as follows; suppose that the matrix

$$
R_{P}^{B}(G)=\left(c^{(0)}, c^{(1)}, \cdots, c^{\left(n_{1}\right)}, \cdots, c_{r-1}^{(0)}, c_{r-1}^{(1)}, \cdots, c_{r-1}^{\left(n_{r}-1\right)}, c_{r}\right)
$$

of principal characters has been found such that, with a suitable arrangement of the ordinary irreducible characters, for $0 \leqq k_{\imath} \leqq n_{\imath}$ and $i=1, \cdots,(r-1)$, each of the matrices

$$
R_{P}^{B}(G)=\left(c_{1}^{\left(k_{1}\right)}, \cdots, c_{r-1}^{(k-1)}, c_{r}\right)
$$

has the triangle of zeros above the main diagonal and 1's on the main diagonal.

[^0]
[^0]: Received October 30, 1992 ; revised August 23, 1993.

