M. SALEEM KODAI MATH. J. 17 (1994), 4—14

DECOMPOSITION NUMBERS FOR SPIN CHARACTERS OF EXCEPTIONAL WEYL GROUPS OF TYPE E_n

By Muhammad Saleem

Introduction

It is well known that the groups, $W(E_6) \cong S_4(3)$. $2 \cong U_4(2)$. 2; $W(E_7) \cong C_2 \times B_3(2) \cong C_2 \times D_7(2)$, where C_2 is the cyclic group of order 2 and $W(E_8) \cong 2$. $O_8^+(2)$. $2 \cong 2$. $D_4(2)$. 2 (see, [CCN]),

In this paper, which is a continuation of [Sa], the decomposition matrices for the spin characters of the exceptional Weyl groups of type E_n (n=6, 7, 8), for the prime numbers p=5, 7 are determined. In all cases except $W(E_8)$ and p=5, the relevant prime number divides, the order of the group to the first power only.

First we use the central characters to split the ordinary characters into p-blocks (For general information about p-blocks, see [CR]). Let B be a p-block of a group G and let Ψ_1, \dots, Ψ_s and ϕ_1, \dots, ϕ_r , respectively, denote the ordinary and p-modular irreducible characters of G in B. The restriction of each Ψ_i to p-regular classes of G, denoted by $\overline{\Psi}_i$ is a p-modular character of G and $\overline{\Psi}_i = \sum_{j=1}^r d_{ij}\phi_j$ $(1 \le i \le s)$ where d_{ij} 's are non-negative ingers, called the decomposition numbers of B for the prime p. The $(s \times r)$ matrix $D_F^B(G) = (d_{ij})$ is called the decomposition matrix of B for the prime p. Furthermore, a principal character $\sum_{i=1}^s c_i \overline{\Psi}_i$ will be identified with the column of integers $c = (c_i)$ and it may be indecomposable or sum of principal indecomposable characters in B.

One way to constructs $D_P^{\mathcal{B}}(G)$ is to find the principal indecomposable characters in B. This method is described by James and Kerber [JK] and is as follows; suppose that the matrix

$$R_P^{\mathcal{B}}(G) = (c^{(0)}, c^{(1)}, \cdots, c^{(n_1)}, \cdots, c^{(0)}_{r-1}, c^{(1)}_{r-1}, \cdots, c^{(n_r-1)}_{r-1}, c_r)$$

of principal characters has been found such that, with a suitable arrangement of the ordinary irreducible characters, for $0 \le k_i \le n_i$ and $i=1, \dots, (r-1)$, each of the matrices

$$R_P^B(G) = (c_1^{(k_1)}, \cdots, c_{r-1}^{(k_{r-1})}, c_r)$$

has the triangle of zeros above the main diagonal and 1's on the main diagonal.

Received October 30, 1992; revised August 23, 1993.