ON THE ZEROS OF A HOMOGENEOUS
 DIFFERENTIAL POLYNOMIAL

By Kazuya Tohge

1. Introduction

Concerning a question of W. K. Hayman [2] (see also [3: Problem 1.18], [4]) E. Mues [5] discussed entire functions g in which the homogeneous differential polynomial $g^{\prime \prime} g-a g^{\prime 2}$ has no zeros. He proved that

$$
g(z)=\exp (\alpha z+\beta), \quad \alpha(\neq 0), \quad \beta \in \boldsymbol{C}
$$

are the only transcendental entire functions with this property if $a \neq 1$. Giving the following two counter-examples he also showed that the case where $a=1$ is indeed exceptional:

$$
\begin{equation*}
g(z)=\sin z \tag{a}
\end{equation*}
$$

and
(b)

$$
g(z)=\exp \{Q(z)-h(z)\},
$$

provided that $h(z)$ is an arbitrary entire function and $Q(z)$ is an entire function defined by

$$
Q(z)=\int_{z_{0}}^{z} \int_{5_{0}}^{\zeta}\left\{h^{\prime \prime}(t)+\exp (2 h(t))\right\} d t d \zeta
$$

In this paper we discuss the corresponding results to meromorphic functions g when there somewhat exist both the poles of g and the zeros of the homogeneous differential polynomial $g^{\prime \prime} g-a g^{\prime 2}$. By a meromorphic function we mean a function meromorphic in the complex plane \boldsymbol{C}. We follow the notation and terminology of [2] and [4]. We shall explain the special symbols whenever we introduce them. In particular, if f is a meromorphic function, we shall denote by $S(r, f)$ any quantity

$$
\begin{equation*}
S(r, f)=o\{T(r, f)\} \tag{1.0}
\end{equation*}
$$

as $r \rightarrow \infty$, possibly outside a set of r of finite linear measure. For the sake of
Received April 28, 1992.

