KO-HOMOLOGIES OF A FEW CELLS COMPLEXES

By ZEN-ICHI YOSIMURA

0. Introduction.

Let KO and KU be the real and the complex K-spectrum respectively. For any CW-spectra X and Y we say that X is quasi KO_* -equivalent to Y if there exists a map $h: Y \rightarrow KO \land X$ such that the composite map $(\mu \land 1)(1 \land h)$: $KO \land Y \rightarrow KO \land X$ is an equivalence where $\mu: KO \land KO \rightarrow KO$ denotes the multiplication of KO (see [4] or [3]). Such a map h is called to be a quasi KO_* equivalence. If X is quasi KO_* -equivalent to Y, then KO_*X is isomorphic to KO_*Y as a KO_* -module and in addition KU_*X is isomorphic to KU_*Y as an abelian group with involution where the conjugation ψ_c^{-1} behaves as an involution. Assume that CW-spectra X and Z have the same quasi KO_* -types as CW-spectra Y and W respectively. For any maps $f: Z \rightarrow X$ and $g: W \rightarrow Y$ we say that f is quasi KO_* -equivalent to g if there exist KO_* -equivalences $h: Y \rightarrow$ $KO \land X$ and $k: W \rightarrow KO \land Z$ such that the equality $hg=(1 \land f)k: W \rightarrow KO \land X$ holds. In this case their cofibers C(f) and C(g) have the same quasi KO_* -type.

A CW-spectrum X is said to be stably quasi KO_* -equivalent to a CWspectrum Y if X is quasi KO_{*}-equivalent to the *i*-fold suspended spectrum $\Sigma^i Y$ for some i. In this note we shall be interested in the stable quasi KO_* -types of complexes with a few cells. Each complex with 2-cells is stably quasi KO_{*} equivalent to one of the following spectra $\Sigma^0 \vee \Sigma^i (0 \leq i \leq 7)$, $SZ/t(t \geq 1)$, $P = C(\eta)$ and $Q = C(\eta^2)$ where SZ/t denotes the Moore spectrum of type Z/t and η : $\Sigma^1 \rightarrow \Sigma^0$ is the stable Hopf map of order 2. Our purpose of this paper is to determine the stable quasi KO_* -types of any complexes with 3- or 4-cells (Theorems 5.3 and 5.4). In [4] and [5] we introduced some 3-cells spectra X_m and X'_m constructed as the cofibers of certain maps $f: \sum^i \to SZ/2^m$ and f': $\sum SZ/2^m \to \sum o$ and some 4-cells spectra $XY_m, X'Y'_m$ and $Y'X_m$ obtained as the cofibers of their mixed maps. In §1 and §4 we study the quasi KO*-types of their cofibers C(g) for any maps $g: S_i \rightarrow \Delta X$ realizing elements of $KO_i X$ when $X = SZ/2^{m}$, P, Q, X_{m} or X'_{m} . In §2 we introduce some 4-cells spectra $X_{m,n}$ constructed as the cofibers of certain maps $f: \sum SZ/2^n \rightarrow SZ/2^m$, and then study the quasi KO_* -types of their cofibers C(g) for any maps $g: \sum Z_n \to \Delta X$ realizing elements of $[\sum^{i} SZ/2^{n}, KO \land X]$ when $X = SZ/2^{m}$, P or Q. In §3 we introduce some new small spectra $XV_{m,n}$, $VX_{m,n}$ and $X'X_{n,m}$ needed in §4. In §5 we prove Theorems 5.3 and 5.4 by using results obtaind in §§ 1-4.

Received November 19, 1992.