ON THE FUNCTIONAL EQUATION $f^{n}=e^{P_{1}}+\cdots+e^{P_{m}}$ AND RIGIDITY THEOREMS FOR HOLOMORPHIC CURVES

BY Yoji NODA

Introduction and statement of results

For each positive integer N we set

$$
\left.E_{N}=\left\{e^{P_{1}}+\cdots+e^{P_{m}} \quad P_{j} \in \boldsymbol{C}[z], \operatorname{deg} P_{j} \leqq N 0=1,-, m\right), m \in \boldsymbol{N}\right\} .
$$

In 1929 J. F. Ritt [4] showed the following theorem.
THEOREM A. Let $g_{0}, g_{1}, \cdots, g_{n}$ be elements of E_{1} and f be a holomorphic function on $\left\{z ; \omega_{1}<\arg z<\omega_{2}\right\}\left(\omega_{2}-\omega_{1}>\pi\right)$ satisfying $g_{n} f^{n}+g_{n-1} f^{n-1}+\cdot \cdot+g_{0}=0$. Then $f \in E_{1}$.

It seems to be natural to ask whether Theorem A is valid with E_{1} replaced by $E_{N}(N \geqq 2)$. However, if $g_{n} \neq 1$, the function $f(z)=\sin \left(\pi z^{2}\right) / \sin \pi z$ gives a negative answer to the above question.

Let $g: \boldsymbol{C} \rightarrow \boldsymbol{P}_{m}$ be a holomorphic curve of finite order, $D_{0}, D_{1}, \cdots>D_{m-1}$ be hyperplanes and D_{m} be a hypersurfac of degree n ($\geqq 2$) satisfying $D_{0} \cap$. $\cap D_{m}-\varnothing, g(\boldsymbol{C}) \cap\left(D_{0} \cup \cdots \cup D_{m}\right)=\varnothing$. We ask whether the image of g is contained in the intersection of hypersurfaces of \boldsymbol{P}_{m}. This problem is related to the functional equation $f^{n}+g_{n-1} f^{n-1}+\cdots+g_{0}=0\left(g_{0}, \cdots, g_{n-1} \in E_{N}\right)$ for an entire function /. M. Green [1] treated the first non-trivial case $f^{2}=e^{2 \varphi_{1}}+e^{2 \varphi_{2}}+e^{2 \varphi_{3}}$ $\left(\varphi_{1}, \varphi_{2}, \varphi_{3} \in \boldsymbol{C}[z]\right)$ and showed that $/$ is a linear combination of $e^{\varphi_{1}}, e^{\varphi_{2}}, e^{\varphi_{3}}$. He also showed that, if $g: C \rightarrow \boldsymbol{P}_{2}$ is a holomorphic curve of finite order omitting the two lines $\left\{Z_{0}=0\right\}$ and $\left\{Z_{1}=0\right\}$ and the conic $\left\{Z_{0}{ }^{2}+Z_{1}{ }^{2}+Z_{2}{ }^{2}=0\right\}$, then the image of g lies in a line or a conic ([1]).

In this paper we shall show the following results.
THEOREM 1. Let P_{1}, \cdots, P_{m} be polynomials, $N=\underset{j}{\max } \operatorname{deg} P_{J}, N \geqq 2, A_{j}=$ $P_{j}^{(N)}(0) / N!(j=1, \cdot \cdot m), n(\geqq 2)$ be an integer and f be a holomorphic function on $\left\{z ; \omega_{1}<\arg z<\omega_{2}\right\}\left(\omega_{2}-\omega_{1}>\pi / N\right)$. Assume that $\#\left\{j A_{1}=v, j=1, \cdots, m\right\}=1$ for every vertex v of the convex hull of $\left\{A_{j}\right\}_{\}_{1=1}^{m}}^{m}$, and that $f^{n}=e^{P_{1}}+\cdots+e^{P_{m}}$ on $\left\{z ; \omega_{1}<\arg z<\omega_{2}\right\}$. Then f is an element of E_{N}.

