ON THE FUNCTIONAL EQUATION $f^n = e^{P_1} + \cdots + e^{P_m}$ AND RIGIDITY THEOREMS FOR HOLOMORPHIC CURVES

BY YOJI NODA

Introduction and statement of results

For each positive integer N we set

 $E_N = \{e^{P_1} + \cdots + e^{P_m} \ P_j \in C[z], \deg P_j \leq N_0 = 1, -, m\}, m \in N\}.$

In 1929 J. F. Ritt [4] showed the following theorem.

THEOREM A. Let g_0, g_1, \dots, g_n be elements of E_1 and f be a holomorphic function on $\{z; \omega_1 < \arg z < \omega_2\}$ $(\omega_2 - \omega_1 > \pi)$ satisfying $g_n f^n + g_{n-1} f^{n-1} + \dots + g_0 = 0$. Then $f \in E_1$.

It seems to be natural to ask whether Theorem A is valid with E_1 replaced by E_N ($N \ge 2$). However, if $g_n \ne 1$, the function $f(z) = \sin(\pi z^2)/\sin \pi z$ gives a negative answer to the above question.

Let $g: \mathbb{C} \to \mathbb{P}_m$ be a holomorphic curve of finite order, $D_0, D_1, \dots > D_{m-1}$ be hyperplanes and D_m be a hypersurfac of degree $n \ (\geq 2)$ satisfying $D_0 \cap \cdots \cap D_m - \emptyset$, $g(\mathbb{C}) \cap (D_0 \cup \cdots \cup D_m) = \emptyset$. We ask whether the image of g is contained in the intersection of hypersurfaces of \mathbb{P}_m . This problem is related to the functional equation $f^n + g_{n-1}f^{n-1} + \cdots + g_0 = 0$ $(g_0, \dots, g_{n-1} \in E_N)$ for an entire function /. M. Green [1] treated the first non-trivial case $f^2 = e^{2\varphi_1} + e^{2\varphi_2} + e^{2\varphi_3}$ $(\varphi_1, \varphi_2, \varphi_3 \in \mathbb{C}[z])$ and showed that / is a linear combination of $e^{\varphi_1}, e^{\varphi_2}, e^{\varphi_3}$. He also showed that, if $g: \mathbb{C} \to \mathbb{P}_2$ is a holomorphic curve of finite order omitting the two lines $\{Z_0=0\}$ and $\{Z_1=0\}$ and the conic $\{Z_0^2 + Z_1^2 + Z_2^2 = 0\}$, then the image of g lies in a line or a conic ([1]).

In this paper we shall show the following results.

THEOREM 1. Let P_1, \dots, P_m be polynomials, $N = \max_j \deg P_j, N \ge 2, A_j = P_j^{(N)}(0)/N!(j=1,\dots,m), n (\ge 2)$ be an integer and f be a holomorphic function on $\{z; \omega_1 < \arg z < \omega_2\} (\omega_2 - \omega_1 > \pi/N)$. Assume that $\#\{j \ A_j = v, j = 1, \dots, m\} = 1$ for every vertex v of the convex hull of $\{A_j\}_{j=1}^m$, and that $f^n = e^{P_1} + \cdots + e^{P_m}$ on $\{z; \omega_1 < \arg z < \omega_2\}$. Then f is an element of E_N .

Received April 5, 1991 Revised November 16, 1992.