R. AIYAMA AND Q.M. CHENG KODAI MATH. J. 15 (1992), 375-386

COMPLETE SPACE-LIKE HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN A LORENTZ SPACE FORM OF DIMENSION 4

BY REIKO AIYAMA AND QING-MING CHENG*

Abstract

On complete space-like hypersurfaces with constant mean curvature in a Lorentz space form of dimension 4, we study the case that the scalar curvature is constant and that the Ricci curvature is bounded from above.

1. Introduction.

Let \mathbf{R}_1^{n+1} be an (n+1)-dimensional Minkowski space and $\mathbf{S}_1^{n+1}(c)$ (resp. $\mathbf{H}_1^{n+1}(c)$) be an (n+1)-dimensional de Sitter space (resp. anti-de Sitter space) of constant curvature c. Considered collectively, a Lorentz manifold of these kinds is called a Lorentz space form of constant curvature c, which is denoted by $M_1^{n+1}(c)$.

Since Calabi [4] and S. Y. Cheng and Yau [7] proved the Bernstein type theorem in \mathbb{R}_1^{n+1} , complete space-like hypersurfaces with constant mean curvature in a Lorentz space form $M_1^{n+1}(c)$ have been studying by many mathematicians. On the other hand, space-like hypersurfaces with constant mean curvature in spacetimes get interested in relativity theory.

It is well known that totally umbilical hypersurfaces $M^n(c')(c' < c)$ and hypersurfaces in the form of $H^k(c_1) \times M^{n-k}(c_2) [k=1, \dots, n-1, c_1 < 0, c(c_1+c_2)=c_1c_2]$ are standard models of complete space-like hypersurfaces with constant mean curvature in $M_1^{n+1}(c)$. Here $M^n(c)$ means an *n*-dimensional space form with constant curvature *c*, that is, a Riemannian sphere $S^n(c)$, a hyperbolic space $H^n(c)$ or a Euclidean space R^n .

Let M be a complete space-like hypersurface with constant mean curvature h/n in $M_1^{n+1}(c)$. In a de Sitter space $S_1^{n+1}(c)$, M is nothing but totally umbilical if n=2 and $h^2 \leq 4c$ or if n>2 and $h^2 < 4(n-1)c$ (cf. Akutagawa [3], Ramanathan [12] or Cheng [5]).

In the other case, there are many examples in $M_1^{n+1}(c)$ which are not standard models (cf. Treibergs [13], Ishihara and Hara [8], Akutagawa [3] and others). But we have known some characterizations of standard models with respect to

^{*} The Research Supported by National Natural Science Foundation of China. Received November 7, 1991; revised March 23, 1992.