THE HADAMARD VARIATIONAL FORMULA FOR THE GROUND STATE VALUE OF $-\Delta u = \lambda |u|^{p-1}u$

By Tatsuzo Osawa

1. Introduction. This article is divided into three parts. In every part we study the Hadamard variational formula for the (non-trivial) ground state value of the semi-linear equation $-\Delta u = \lambda |u|^{p-1}u$.

Let Ω be a bounded domain in \mathbb{R}^N $(N \ge 2)$ with smooth boundary $\partial \Omega$. Let ρ be a smooth function on $\partial \Omega$. We denote $\nu(x)$ as the exterior unit normal vector at $x \in \partial \Omega$. If ε is small enough, we have a new domain Ω_{ε} bounded by

$$\partial \Omega_{\varepsilon} = \{x + \varepsilon \rho(x)\nu(x); x \in \partial \Omega\}.$$

Let p be a fixed number satisfying 1 for <math>N=2, $1 for <math>N \ge 3$.

We consider the minimizing problem

(1.1)
$$\lambda_{\varepsilon} = \inf_{X_{\varepsilon}} \int_{\mathcal{G}_{\varepsilon}} |\nabla \varphi|^2 dx,$$

where

$$X_{\varepsilon} = \{ \varphi \in H^{1}_{0}(\mathcal{Q}_{\varepsilon}), \varphi \geq 0, \|\varphi\|_{L^{p+1}(\mathcal{Q}_{\varepsilon})} = 1 \}.$$

For the sake of simplicity we write $\| \|_{L^{p+1}(\Omega_{\varepsilon})}$ as $\| \|_{p+1,\varepsilon}$. It is well known that there exists at least one solution $u_{\varepsilon} \in C^{3,\alpha}(\bar{\Omega}_{\varepsilon})$ satisfying $\| u_{\varepsilon} \|_{p+1,\varepsilon} = 1$, and

$$-\Delta u_{\varepsilon}(x) = \lambda_{\varepsilon} u_{\varepsilon}^{p}(x) \quad x \in \Omega_{\varepsilon}$$
$$u_{\varepsilon}(x) = 0 \qquad x \in \partial \Omega_{\varepsilon}.$$

and $u_{\varepsilon} > 0$ in Ω_{ε} .

The author calls λ_{ε} as the Dirichlet ground state value on Ω_{ε} and u_{ε} as the Dirichlet ground state solution.

In this note we would like to consider ε -dependence of λ_{ε} , u_{ε} . One of the main result of this paper is the following: Here $\lambda_0 = \lambda$, $u_0 = u$.

THEOREM 1. Assume that the number of positive solution u which minimize $(1.1)_0$ is unique. Assume that $\operatorname{Ker}(\Delta + \lambda p u^{p-1}) = \{0\}$. Then, we have the following limit.

Received December 14, 1991.