ON THE FREQUENCY OF COMPLEX ZEROS OF SOLUTIONS OF CERTAIN DIFFERENTIAL EQUATIONS

By Steven B. Bank ${ }^{1}$

Abstract

. In this paper, we investigate the frequency of zeros of solutions of linear differential equations of the form $w^{(k)}+\sum_{j=1}^{k-1} Q_{j} w^{(j)}+\left(Q_{0}+R e^{P}\right) w=0$, where $k \geqq 2$, and where $Q_{0}, \cdots, Q_{k-1}, R$ and P are arbitrary polynomials with $R \not \equiv 0$ and P non-constant. All solutions $f \not \equiv 0$ of such an equation are entire functions of infinite order of growth, but there are examples of such equations which can possess a solution whose zero-sequence has a finite exponent of convergence. In this paper, we show that unless a special relation exists between the polynomials Q_{0}, \cdots, Q_{k-1}, and P, all solutions of such an equation have an infinite exponent of convergence for their zero-sequences. This result extends earlier results for the equation, $w^{(k)}+\left(Q_{0}+R e^{P}\right) w=0$.

1. Introduction. Several recent papers (e.g. [7], [8], [9], [10], [11], [15]) have dealt with the investigation of the frequency of zeros of solutions of equations of the form,

$$
\begin{equation*}
w^{(k)}+\left(R e^{P}+Q\right) w=0, \tag{1.1}
\end{equation*}
$$

where $k \geqq 2$, and where R, P, and Q are polynomials with $R \not \equiv 0$ and P nonconstant. It was shown in [7; §5(b), p. 356] that for any polynomial $P(z)$ of degree $r \geqq 1$, there exists a polynomial $Q(z)$ of degree $2 r-2$ such that the second-order equation,

$$
\begin{equation*}
w^{\prime \prime}+\left(e^{P}+Q\right) w=0, \tag{1.2}
\end{equation*}
$$

possesses two linearly independent solutions each having no zeros. This result led to an investigation in [8] of the more general equation (1.1) of arbitrary order $k \geqq 2$, and it was shown in [8] that if the degree of Q is less than $k r-k$,

[^0]
[^0]: ${ }^{1}$ This research was supported in part by the National Science Foundation (DMS9024930).

 Received July 5, 1991.

