SOME RESULTS ON THE COMPLEX OSCILLATION THEORY OF SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

By CUN-ZHI HUANG

1. Introduction

We consider the second order linear differential equation

$$f'' + Af = 0, \tag{1}$$

where A is an entire function. For an entire function f, let $\rho(f)$ be its order, $\mu(f)$ its lower order and $\lambda(f)$ the exponent of convergence of its zeros. In addition, we assume that the reader is familiar with the standard notations of Nevanlinna theory (see [3]).

When A is a polynomial of degree $n \ge 1$, S. Bank and I. Laine obtained the following ([1]).

THEOREM A. Let A be a polynomial of degree $n \ge 1$. If $f \equiv 0$ is a solution of (1), then

$$\rho(f) = (n+2)/2,$$
 (2)

and if f_1 , f_2 are two linearly independent solutions of (1), then

$$\max(\lambda(f_1), \lambda(f_2)) = (n+2)/2.$$
(3)

If A is transcendental, we apply the lemma on the logarithmic derivative in Nevanlinna theory to (1) and can deduce that any solution $f \equiv 0$ of (1) satisfies

$$\rho(f) = \infty \,. \tag{4}$$

We may hope that

$$\max(\lambda(f_1), \lambda(f_2)) = \infty, \qquad (5)$$

where f_1 and f_2 are linearly independent solutions of (1). However, examples in [1] show that this is not the case. Specifically, for $\rho(A)$ a positive integer or infinity, there exist A and independent solutions f_1 , f_2 of (1) such that

Received August 30, 1990.