ON THE EXISTENCE OF LIMIT CYCLES OF THE EQUATION $x' = h(y) - F(x), y' = -g(x)^*$

BY KE WANG

1. Introduction.

Owing to their theoretical and practical importance, the Liénard equations have attracted much attention in recent years, in particular, for theory of periodic solutions, see [1-7].

In this paper, we consider the existence of limit cycles of the system

$$\begin{cases} x'=h(y)-F(x)\\ y'=-g(x), \end{cases}$$
(1)

which is little more general than the Liénard equation. We assume that F, G, $h: \mathbb{R} \to \mathbb{R}$ are continuous functions and satisfy the property of uniqueness for the solutions to the Cauchy problems associated to the system (1), and xg(x)>0 for every $x \neq 0$, yh(y)>0 for every $y\neq 0$. Without loss of generality, we also assume F(0)=0. We obtained some new results. The theorems of this paper generalized some results in [5] and [7].

Let Y^+ , Y^- , C^+ , C^- denote the sets $\{(x, y): y \ge 0, x=0\}$, $\{(x, y): y \le 0, x=0\}$, $\{(x, y): h(y)=F(x), x>0\}$ and $\{(x, y): h(y)=F(x), x<0\}$, respectively.

2. Technical Preliminaries.

LEMMA 1. If we assume

(i)
$$\overline{\lim}_{y \to \infty} h(y) = +\infty$$
, and $\lim_{y \to \infty} h(y) = -\infty$,

then the sufficient and necessary condition that there exists a point $N \in Y^-$ such that the negative half-trajectory L_N^- passing through point N does not intersect C^+ is

(ii)_a there exists a continuously differentiable function $k_1(x)$ defined on $(0, \infty)$ with positive derivative such that

$$F(x) \ge h(k_1(x)) + \frac{g(x)}{k_1'(x)} \quad for \quad x > 0.$$

^{*} Supported by the National Natural Science Foundation of China Received December 18, 1987, Revised August 10, 1988