BOUNDED ANALYTIC FUNCTIONS AND METRICS OF CONSTANT CURVATURE ON RIEMANN SURFACES

By Akira Yamada

1. Introduction.

Let $B(\Omega)$ be the set of bounded analytic functions $f: \Omega \to \Delta$, where Ω is a simply connected hyperbolic Riemann surface and Δ is the unit disc. Let $B_0(\Omega)$ be the set of locally schlicht functions belonging to $B(\Omega)$. The Poincaré metric λ_{Ω} of the surface Ω has constant curvature $\equiv -4$. Explicitly, we have $\lambda_{\Delta}(z) = |dz|/(1-|z|^2)$. It is well known that the pull-back $f^*\lambda_{\Delta}(z) = |f'(z)||dz|/(1-|f(z)|^2)$ of λ_{Δ} via $f \in B_0(\Omega)$ (resp. $f \in B(\Omega)$) is a metric of constant curvature $\equiv -4$ regular (resp. with isolated singularities) on Ω . The main result of this paper asserts that the converse of the above relation holds. For simplicity, we denote by M(X) the set of C^{∞} conformal metrics of constant curvature $\equiv -4$ on a Riemann surface X.

THEOREM 1. For all $\lambda \in M(\Omega)$, there exists an $f \in B_0(\Omega)$ such that $\lambda = f^* \lambda_{\Delta}$. Moreover, $\lambda = g^* \lambda_{\Delta}$ for $g \in B_0(\Omega)$ if and only if g is of the form $g = \gamma \circ f$ where $\gamma \in \text{M\"ob}(\Delta)$, the set of Möbius transformations leaving Δ fixed.

THEOREM 2. Let E be an arbitrary closed discrete subset of Ω . If $\lambda \in M(\Omega \setminus E)$ has non-positive integral indices at every point in E, then there exists an $f \in B(\Omega)$ such that $\lambda = f^*\lambda_{\Delta}$ on $\Omega \setminus E$. Moreover, $\lambda = g^*\lambda_{\Delta}$ on $\Omega \setminus E$ if and only if g is of the form $g = \gamma \circ f$ with $\gamma \in M\"{ob}(\Delta)$.

Theorems 1 and 2 show that the set of metrics of constant negative curvature is in a one-to-one correspondence with the set of bounded analytic functions in Ω modulo Möb(Δ). Theorem 2 is an improvement of Theorem 29.1 in Heins [2] and many of the results concerning metrics of constant curvature in [2] are easy consequence of Theorem 1. Also, Theorem 1 allows us to define the monodromy homomorphism χ of a metric of constant curvature. Theorem 6 answers the question when the image of the homomorphism χ acts discontinuously on Δ . In the last section, we prove a theorem which shows that a theorem in [5] is false.

The author wishes to thank the referee for helpful comments and advice.

Received December 8, 1987