BOUNDED ANALYTIC FUNCTIONS AND METRICS OF CONSTANT CURVATURE ON RIEMANN SURFACES

By Akira Yamada

1. Introduction.

Let $\boldsymbol{B}(\Omega)$ be the set of bounded analytic functions $f: \Omega \rightarrow \Delta$, where Ω is a simply connected hyperbolic Riemann surface and Δ is the unit disc. Let $\boldsymbol{B}_{0}(\Omega)$ be the set of locally schlicht functions belonging to $\boldsymbol{B}(\Omega)$. The Poincaré metric λ_{Ω} of the surface Ω has constant curvature $\equiv-4$. Explicitly, we have $\lambda_{\Delta}(z)=$ $|d z| /\left(1-|z|^{2}\right)$. It is well known that the pull-back $f^{*} \lambda_{\Delta}(z)=\left|f^{\prime}(z) \| d z\right| /(1-$ $\left.|f(z)|^{2}\right)$ of λ_{Δ} via $f \in \boldsymbol{B}_{0}(\Omega)$ (resp. $f \in B(\Omega)$) is a metric of constant curvature $\equiv-4$ regular (resp. with isolated singularities) on Ω. The main result of this paper asserts that the converse of the above relation holds. For simplicity, we denote by $M(X)$ the set of \mathcal{C}^{∞} conformal metrics of constant curvature $\equiv-4$ on a Riemann surface X.

Theorem 1. For all $\lambda \in M(\Omega)$, there exists an $f \in \boldsymbol{B}_{0}(\Omega)$ such that $\lambda=f^{*} \lambda_{\Delta}$. Moreover, $\lambda=g^{*} \lambda_{\Delta}$ for $g \in \boldsymbol{B}_{0}(\Omega)$ if and only if g is of the form $g=\gamma \circ f$ where $\gamma \in \operatorname{Möb}(\Delta)$, the set of Möbius transformations leaving Δ fixed.

Theorem 2. Let E be an arbitrary closed discrete subset of Ω. If $\lambda \in$ $M(\Omega \backslash E)$ has non-positive integral indices at every point in E, then there exists an $f \in \boldsymbol{B}(\Omega)$ such that $\lambda=f^{*} \lambda_{\Delta}$ on $\Omega \backslash E$. Moreover, $\lambda=g^{*} \lambda_{\Delta}$ on $\Omega \backslash E$ if and only if g is of the form $g=\gamma \circ f$ with $\gamma \in \operatorname{Möb}(\Delta)$.

Theorems 1 and 2 show that the set of metrics of constant negative curvature is in a one-to-one correspondence with the set of bounded analytic functions in Ω modulo $\operatorname{Möb}(\Delta)$. Theorem 2 is an improvement of Theorem 29.1 in Heins [2] and many of the results concerning metrics of constant curvature in [2] are easy consequence of Theorem 1. Also, Theorem 1 allows us to define the monodromy homomorphism χ of a metric of constant curvature. Theorem 6 answers the question when the image of the homomorphism χ acts discontinuously on Δ. In the last section, we prove a theorem which shows that a theorem in [5] is false.

The author wishes to thank the referee for helpful comments and advice.

