N. WATANABE KODAI MATH. J 9 (1986), 165-169

NONCOMMUTATIVE EXTENSION OF AN INTEGRAL REPRESENTATION THEOREM OF ENTROPY

Dedicated to Professor H. Umegaki on his 60th birthday

By Noboru Watanabe

Introduction

In 1964, Umegaki proved a theorem of McMillan type concerning the integral representation of entropy in the measure theoretic framework, about which we briefly review in § 1. Noncommutative probability theory is important to analyse some physical systems [1, 2, 4, 5, 6, 7, 10, 11, 12, 13, 16, 17]. In this paper, using various results obtained in operator algebras, we extend this theorem to that for noncommutative systems.

§1. Integral representation of entropy

Let X be a compact metric space and $\mathfrak{B}(X)$ be the σ -field of all Borel sets in X. We denote a homeomorphism on X by T and the set of all T-invariant regular probability measures p, q, \cdots on X by P_T . Let \mathcal{P} be a finite partition of X and we put $\mathfrak{M}_n = \bigvee_{k=1}^n T^{-k} \mathcal{P}$ and $\mathfrak{M}_{\infty} = \bigvee_{k=1}^{\infty} \mathfrak{M}_k$. Then the entropy of each $p \in P_T$ is defined by

$$S(p) = -\lim \frac{1}{n} \Sigma_U p(U) \log p(U) \quad (n \to \infty),$$

where Σ_U means the summation over U of the atomic sets in $\mathcal{P} \vee \mathfrak{M}_{n-1}$. For any $p \in P_T$, we denote the conditional probability functions of $U \in \mathcal{P}$ with respect to \mathfrak{M}_n and \mathfrak{M}_{∞} by $P_p(U|\mathfrak{M}_n)$ and $P_p(U|\mathfrak{M}_{\infty})$ respectively. Now we define the \mathfrak{M}_{∞} -measurable function $h_p(x)$ on X as follows:

$$h_p(x) = -\sum_{U \in \mathcal{D}} P_p(U \mid \mathfrak{M}_{\infty}) \log P_p(U \mid \mathfrak{M}_{\infty})(x) \qquad p\text{-a. e.} \quad x \in X,$$

for any $p \in P_T$. Then, the next important theorem [14] of McMillan type holds.

THEOREM 1. For any finite partition \mathcal{P} , there universally exists a Borel measurable function h(x) on X such that it is bounded, non-negative, T-invariant and satisfies

(1)
$$h(x) = h_p(x)$$
 p-a.e. $x \in X$ and for every $p \in P_T$,

Received June 20, 1985